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Abstract

We present a framework for grouping and recognition
of characters and symbols in online free-form ink expres-
sions. The approach is completely spatial; it does not re-
quire any ordering on the strokes. It also does not place
any constraints on the layout of the symbols. Initially each
of the strokes on the page is linked in a proximity graph. A
discriminative recognizer is used to classify connected sub-
graphs as either making up one of the known symbols or
perhaps as an invalid combination of strokes (e.g. including
strokes from two different symbols). This recognizer oper-
ates on the rendered image of the strokes plus stroke features
such as curvature and endpoints. A small subset of very ef-
ficient image features is selected, yielding an extremely fast
recognizer. Dynamic programming over connected subsets
of the proximity graph is used to simultaneously find the
optimal grouping and recognition of all the strokes on the
page. Experiments demonstrate that the system can achieve
94% grouping/recognition accuracy on a test dataset con-
taining symbols from 25 writers held out from the training
process.

Keywords: symbol recognition, handwriting, segmenta-
tion, mathematics recognition

1 Introduction

Handwritten text recognition is a maturing technology
that has spawned many software products. In these sys-
tems the user writes words in a structured fashion, either
along a line or in an “input region”. The recognition sys-
tem can then process the entire line of text using dynamic
programming to find the optimal recognition and grouping
of the strokes. When freed from the rigid “input region”
requirement, users frequently generate free form handwrit-
ten notes which include handwritten text, diagrams, and an-
notation. These notes require significant initial processing
in order to group the strokes into “lines” of text which can
then be passed to the recognizer (see for example [10]). The
grouping process is inherently difficult, and the best perfor-

mance is achieved for simple paragraph structures in which
there are a number of longer lines physically separated from
drawing and annotations. While the grouping process could
be integrated with the recognition process, the complexity
of connected cursive recognition favors the two step process
in which grouping precedes recognition. While it is likely
that an integration of grouping and recognition would yield
better results, this remains an open problem.

There are however a number of ink recognition problems
which provide few constraints on the high-level layout of
the page (Figure 1). One example is mathematical equa-
tion recognition, which incorporates many types of geomet-
ric layouts and symbols. Other examples include chemical
structures, editing marks, musical notes, and so on. These
scenarios are particularly important to pen computing be-
cause they exploit the flexibility of a pen to quickly express
spatial arrangements, which is something that is currently
difficult using a mouse and keyboard alone.

Therefore, we pose the problem of a system that per-
forms integrated grouping and recognition of symbols over
a page of handwritten ink. The system should not constrain
writing order, because it is common to add extra strokes to
correct characters after the fact. It should not make strict
assumptions about the layout of the page. It should also
scale to large pages of ink such as freeform notes, which
can contain thousands of strokes in some cases.

Layout and timing-insensitive character recognition and
grouping is not an easy problem. Symbol recognition is a
well-known problem, for which many methods have been
proposed [3]. The handwriting recognition community
has developed countless techniques for optimizing group-
ing and recognition over a fixed spatial or temporal order,
and for recognizing isolated characters [8, 12]. The closest
related systems are those that deal with the processing of
mathematical expressions [2, 4, 6, 7, 11]. Unlike some of
these systems, we are trying to solve the problem in a way
that does not require time ordering of strokes, does not re-
quire a linear organization of strokes on the page, and deals
in a principled fashion with symbols that contain multiple
strokes, some of which can be interpreted in isolation as
another symbol.
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Figure 1. The pen is a particularly useful input device when layout is unconstrained, as is the case in (a)
mathematics, (b) chemistry, and (c) document annotations.

2 Optimized Recognition and Grouping

In this paper, we present an efficient, purely spatial ap-
proach to simultaneously group and recognize handwritten
symbols on a page. Our approach is an optimization over
a large space of possible groupings in which each grouping
is evaluated by a recognizer (Figure 2). This is in contrast
to approaches where grouping and recognition are carried
out as separate steps (e.g. systems with a separate layout
analysis step).

In this approach the recognizer carries the burden of dis-
tinguishing good groupings from bad groupings and also
must assign correct labels to good groupings. This sort
of recognizer must evaluate quickly in order to process the
large number of possible stroke groupings for a page of ink
in a reasonable time.

Given such a recognizer, there are several benefits to this
factoring of the problem. Improving the accuracy or perfor-
mance of the system is simply a function of improving the
accuracy or performance of the recognizer. Introducing new
features to the system, such as rotation- or scale-invariance
is simply a matter of changing the recognizer, rather than
changing both the recognizer and the layout analysis. Per-
haps most significantly, it enables our system to be nearly
entirely learned from examples rather than relying on hand-
coded heuristics. This last point bears repeating: ours is a
monolithic system which once developed, requires no hand
constructed geometric features. All thresholds and parame-
ters are learned automatically from a training set of exam-
ples.

Our system operates in the following manner. As a pre-
processing step, it first builds a neighborhood graph of the
ink in which nodes correspond to strokes, and edges are
added when strokes are in close proximity to one another.
Given this graph, we iterate efficiently over connected sets
of nodes in the graph using dynamic programming and fast
hashing on collections of nodes. For each set of nodes of
up to size K, we perform a discriminative recognition on
the set. This allows us to incorporate non-local informa-
tion that rules out spurious answers that might result from

a generative model. We use dynamic programming to opti-
mize over the space of possible explanations. The resulting
system achieves high accuracy rates without any language
model, places no stroke ordering requirements on the user,
and places no constraints on the way in which symbols must
be laid out on the page.

2.1 Optimization

Given a page of ink, we wish to minimize a global cost
function:

C({Vi}) = ® (R(Vo), R(V1), ..., R(V2)) )

In Equation 1, each V; is a subset of the vertices which form
a partition of the page, R is the best recognition result for
that set of vertices, the function @ is a combination cost
(such as sum, max, or average), and C represents the overall
cost of a particular grouping {V;}.

To implement this optimization efficiently, we need a
way to iterate over valid sets V; (graph iteration), an effi-
cient and accurate symbol recognizer R (recognition cost),
a cost function to combine the cost of two subgraphs ®
(combination cost), and a way to reuse computation (dy-
namic programming).

2.2 Graph Iteration

In order to constrain the set of possible groupings, we say
that a grouping is only valid if the strokes in that grouping
are in close proximity to one another.

Thus, from a page of ink we construct a neighborhood
graph G = (V, E) in which the vertices V' correspond to
strokes, and edges F correspond to neighbor relationships
between strokes, as shown in Figure 2b. We use the terms
strokes and vertices interchangeably.

In our system, vertices are neighbors if the minimum dis-
tance between the convex hulls of their strokes is less than a
threshold. However, we expect that any reasonable prox-
imity measure would generate similar recognition results
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Figure 2. An overview of our approach. (a) A user sketch containing several strokes. (b) A neighborhood graph
of the strokes in the sketch. (c) Connected subsets of the neighborhood graph of up to a fixed size K. (d)
Rendered images of the subsets that are passed to an AdaBoost recognizer. (e) Results from the recognizer
include a symbol hypothesis and a score. (f) An optimization partitions the graph to jointly maximize the

recognizer scores.

as long as the neighborhood graph contains edges between
strokes in the same symbol.

Given this neighborhood graph, we wish to enumerate
all connected subsets of the nodes V; in V where |V;| < K.
Each subset V; becomes a symbol candidate for the recog-
nizer.

To our knowledge, there is no efficient way to enumer-
ate subsets of up to size K without duplicating subsets. We
iterate by first enumerating all subsets of size 1. We then
expand each subset by all of the edges on its horizon, elim-
inate duplicates, expand again, and so on, up through size
K. This eliminates the propagation of duplicates through
each round.

The subsets V; that are generated for the graph in Fig-
ure2bare {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {2, 4}, {3, 4},
{1,2,3},{1,2,4},{2,3,4},{1,2,3,4}.

2.3 Recognition Cost

The second implementation detail of the optimization
process is the recognition cost R (see Section 3 for a de-
tailed discussion). The simple requirements are that R
should return relatively low costs for subsets of the graph
V; that correspond to symbols (such as in Figure 3a). Sim-
ilarly, R should return relatively high costs for subsets of
the graph that do not correspond to symbols (such as in Fig-
ure 3b,c,d).

In fact, this is not as easy as it sounds. Many of the
subsets that are passed to the recognizer are invalid, either
containing strokes from multiple characters or do not con-
tain all the strokes of a multi-stroke symbol. We call such
subgraphs garbage. While some of the garbage doesn’t look
like any symbol in the training set, some invalid examples
are indistinguishable from training samples without the use
of context. For example a single stroke of an X can be easily
interpreted in isolation as a back-slash (Figure 3c).

Therefore we also pass the context X (V;, E) into the rec-
ognizer to help it spot garbage. We define the context to be
the set of nodes in V' — V; that are connected to V; in E, and
show an example in Figure 3d.

2.4 Combination Cost

The third implementation detail of the optimization is
the combination cost, ®(c1, c2). The combination cost is a
function of the costs of the two subsets of the graph. We
considered several alternative costs:

e Sum. ®(cy, c2) = ¢1 + ¢c2 + &. The sum of the
costs makes intuitive sense: if the costs are negative
log likelihoods then the sum corresponds to a product
of probabilities. The ¢ penalty can be used to control
over/under grouping (higher values of ¢ force grouping
into fewer symbols).

e Max. ®(cy, c2) = Max(cq, c2). This function penalizes
the worst hypothesis in the set.

e Average. ®(cy, ¢2) = (c1 + wez)/(1+w). This function
averages the scores across all of the symbols in the hy-
pothesis. w is a weight corresponding to the number of
symbols in the best interpretation for V' — V.

2.5 Dynamic Programming

Finally, Because the function we wish to optimize
cleanly partitions the graph into a combination of R(V;)
and C(V — V;), we are able to use dynamic programming
to avoid redundant computation. In other words, if we have
already computed C for a subset of strokes in the neighbor-
hood graph, we can reuse the result by looking it up in a
hash table. We hash on sets of strokes by XOR’ing stroke
ID’s.
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Figure 3. A set of inputs to the recognizer. (a) A full symbol that is passed as a candidate to the recognizer.
(b) Overgrouped garbage that is passed as a candidate to the recognizer. (c) Garbage that is ambiguous with a
back-slash when passed to the recognizer without context. (d) Neighborhood context that makes the stroke in

(c) unambiguously garbage.

3 AdaBoost Symbol Recognizer

The recognizer utilized in the dynamic programming
system described above is based on a novel application of
AdaBoost [5].

The basic framework used is most closely related to the
work of Viola and Jones, who constructed a real-time face
detection system using a boosted collection of simple and
efficient features [13]. We chose this approach both because
of its speed and because it is easily extensible to include
additional feature information.

We have generalized Viola-Jones in two ways: our clas-
sification feature information. We have generalized Viola-
Jones in two ways: our classification problem is multi-class,
and we have added additional input features to the image
map. These additional features are computed directly from
the on-line stroke information and include curvature, orien-
tation, and end-point information.

The input to the recognition system is a collection of
images. The two principle images are the candidate im-
age and the context image. The candidate image is quite
conventional, the strokes of the current candidate sub-graph
are rendered into an image which is 29x29 pixels. The ge-
ometry of the strokes is normalized so that they fit within
the central 18x18 pixel region of the image. Strokes are
rendered in black on white with anti-aliasing. The context
image is rendered from the strokes which are connected to
some candidate stroke in the proximity graph.

3.1 Additional Feature Images

Each of the principle images are augmented with addi-
tional stroke feature images. This is much like the earlier
work on AMAP [1]. The first additional image records the
curvature at each point along each stroke. The angle be-
tween the tangents is a signed quantity that depends on the
direction of the stroke, which is undesirable. The absolute
value of this angle provides direction invariant curvature in-
formation.

Two additional feature images measure orientation of the
stroke. Orientation is a difficult issue in image processing,
since it is naturally embedded on a circle (and hence 27
is identical to 0). We have chosen to represent orientation
in terms of the normal vector (perpendicular vector) to the
stroke (which is measured from the same nearby points used
to measure curvature). The two components of the normal
are represented as two images the normalX image, and the
normalY image (by convention the normal has a positive
dot product with the previous tangent).

The final additional feature image contains only the end-
points of the strokes, rather than the entire stroke. This mea-
sure can be useful in distinguishing two characters which
have much ink in common, but have a different start and
end point, or a different number of strokes (for example ‘8’
and ‘37).

3.2 The Viola-Jones Filters

A very large set of simple linear functions are computed
from the input images define above. The form of these lin-
ear functions was proposed by Viola and Jones, who call
them ‘rectangle filters’. Each can be evaluated extremely
rapidly at any scale (see Figure 5). The filters measure the
differences between region averages at various scales, ori-
entations, and aspect ratios. The rigid form of these features
arises from the fact that each can be computed extremely
rapidly, in 6 or fewer add/multiplies.

For these experiments a set of one and two rectangle fil-
ters were constructed combinatorially. A set of filters of
varying location, size, aspect ratio, and location are gen-
erated. The set is not exhaustive; some effort is made to
minimize overlap between the filters, resuling in 5280 fil-
ters. Such a large set is clearly overcomplete in that requires
only 841 linear filters to reconstruct the original 29 by 29
image. Nevertheless this overcomplete basis is very useful
for learning. Each filter can be evaluated for each of the
10 feature images, yielding a set of 52,800 filter values for
each training example. Clearly some approach for selecting
a critical subset of these will improve performance.
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3.3 AdaBoost Feature Selection and Learning

The above sections describe a processing pipeline for
training data: a rendering process for candidate and con-
text, a set of additional feature images, and set of rectangle
filters. The machine learning problem is to generate a clas-
sifier for this data which correctly determines the correct
symbol of the candidate strokes, or possibly that the set of
strokes is garbage. We use AdaBoost to learn a classifier
which selects a small set of rectangle filters and combines
them.

For these experiments the “weak learner” is a classi-
fier which computes a single rectangle filter and applies a
threshold (this is a type of decision tree known as a decision
stump). In each round of boosting the single best stump is
selected, and then the examples are reweighted. We use the
multi-class variant of confidence rated boosting algorithm
proposed by Schapire and Singer [9].

After N rounds, the final classifier contains N weak
classifiers. Since each weak classifier depends on a single
rectangle filter only N filters need to be evaluated. Excel-
lent performance is achieved with between 75 and 200 fil-
ters. On a training set of 3800 examples from 25 writers, 0
training errors is observed with 165 weak classifiers. On a
test set of 3800 examples from a different set of 25 writers
96% of the characters were classified correctly.

4 Evaluation

To evaluate our approach, we ran tests on a corpus of
automatically-generated mathematical expressions. We col-
lected a modest set of handwritten characters, digits, and
mathematical operators from 50 users with 5 examples per
class. Of these examples, we synthesized short expressions
containing digits and operators with a generative grammar
(Figure 6). Our generated expressions are intentionally
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N

Figure 4. The left most images in each row are the
candidate and context images rendered at 29x29
pixels. The remainder of each row shows various
feature images computed from these principle im-
ages. From left to right: stroke curvature, stroke
normal X, stroke normal Y, and endpoints.

Figure 5. Example rectangle filters shown relative
to the enclosing classification window. The sum
of the pixels which lie within the white rectangles
are subtracted from the sum of pixels in the grey
rectangles. Rectangle filters which contain two
rectangles are shown in (A) and (B).

dense, in order to make the grouping problem more interest-
ing. Also it is worth noting that although each of our test ex-
amples is horizontally-oriented, our technique applies inde-
pendent of the layout. We have manually applied the tech-
nique to examples with more interesting layouts and show
that it works in practice, although our test data does not re-
flect this condition.

We separated the generated expressions into training and
test data, such that 25 users’ data made up the training set
and the other 25 users made up the test set. This split en-
sures that we are testing the generalization of the recognizer
across different populations.

We applied the above system to the test data with three
different combination cost functions: sum, max, and avg, as
described in Section 2.4. For sum we varied the value of
e to see its effect on the overall accuracy. For all of these
approaches we measured the total number of symbols in the
test data, the total number of false positives and false neg-
atives in the results. A false negative occurs any time there
is a group of strokes with a specific symbol label in the test
data, and that exact group/label does not occur in the test
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Generated Equations

Collected handwriting

Figure 6. Collected truth data is rendered into two
sets of mathematical expressions, which serve as
training and test data, respectively.
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data. A false positive is the converse. Our best results are
94% accuracy for grouing and recognition for the avg com-
bination cost. The full results are shown in Table 1.

Cost False Pos | False Neg | Total
Sum (e =-.2) 299 243 3840
Sum (e =-.25) 308 248 3840
Max 267 243 3840
Avg 225 202 3840

Table 1. Results on 3840 symbols in the context of
generated mathematical expressions.

5 Conclusion

This paper presents an integrated grouping and recogni-
tion system of on-line freeform ink. Grouping is a require-
ment for recognition in such tasks because each symbol may
have a number of strokes. Simple heuristics that group in-
tersecting strokes may work in some cases. In domains
which include multi-stroke symbols such as ‘=" (equals)
or ‘m’ (pi), these heuristics fail. Conversely, it is not un-
common to see strokes from different characters come very
close to or intersect each other.

This integrated system first constructs a proximity graph
which links pairs of strokes if they are sufficiently close to-
gether. The system then enumerates all possible connected
subgraphs looking for those that represent valid characters.
The notion of proximity is defined so that strokes from the
same symbol are always connected. This definition of prox-
imity will necessarily link strokes from neighboring sym-
bols as well. These connected subgraphs are not inter-
pretable as a valid symbol, and will be discarded as garbage.
Note, a garbage subgraph can also arise if a symbol is un-
dergrouped: e.g. only one of the strokes in a multi-stroke
character is included. A fast recognizer based on AdaBoost
is trained to recognize all symbol classes as well as a unique
class called garbage, which includes subgraphs of strokes
that are not valid. In order to address the undergrouping
problem, the recognizer operates both on the current candi-
date strokes as well as the context of the surround strokes.

Dynamic programming is used to search for the mini-
mum cost decomposition of the initial proximity graph into
connected subgraphs, each of which can be interpreted as
a valid symbol. The set of all possible connected sub-
graphs is efficiently enumerated using an incremental hash-
ing scheme which grows subgraphs one node at a time and
efficiently removes duplicates.

The recognizer is trained on symbols which come from
25 writers. The final system achieves a 94% simultaneous

grouping and recognition rate on test data from 25 different
users which was not used during training.
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