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Abstract

We propose in this paper a stability measure of entropy
estimate based on the principle of Bayesian statistics. Sta-
bility, or how the estimates vary as training set does, is a
critical issue especially for the problems where parameter-
to-data ratio is extremely high as in language modeling and
text compression. There are two natural estimates of en-
tropy, one being the classical estimate and the other the
Bayesian estimate. We show that the difference of them is in
strong positive correlation with the variance of the classical
estimate when it is not so small, and propose this difference
as stability measure of entropy estimate. In order to evalu-
ate it for language models where estimates are available but
posterior distribution is not in general, we suggest to use a
Dirichlet distribution so that its expectation agrees with the
estimated parameters and that the total count is preserved
at the same time. Experiments on two benchmark corpora
show that the proposed measure indeed reflects the stability
of classical entropy estimates.

1. Introduction

There are problems which are bound to suffer from in-
surmountable lack of data in comparison with the number
of parameters. Examples include language models [6] and
text compression [2]. These problems resist purely statisti-
cal analysis due to this lack of data. For instance, the num-
ber of all trigrams for 10,000-word vocabulary is 1 trillion,
while the training corpus consists rarely of more than 10
million words.

Our interest mainly lies in language models. Dedicated
techniques such as discounting and backoff have been de-
vised to overcome lack of data in language models, and
such techniques provide rather satisfactory solutions. How-
ever, there has been little attention paid to stability of the

estimates thus obtained, i.e., to how they vary on differ-
ent training sets. Especially because of this extremely high
parameter-to-data ratio, the stability of these estimates is as
important as the estimates themselves, in the light of bias-
variance decomposition [9]. The more parameter we have,
the more likely it is that the variance over the choice of the
training set becomes large, i.e., the more unstable the esti-
mated parameters are.

We investigate in this paper the stability of entropy esti-
mates, in the framework of Bayesian statistics [3]. Two dif-
ferent estimates can be obtained by taking expectation and
entropy of posterior distribution in different orders. The dif-
ference of these two estimates is proposed as stability mea-
sure.

The first of these estimates, which will be henceforth re-
ferred to as classical estimate, is computed by first taking
expectations of parameters and then computing entropy of
them, It is simply the entropy of frequency counts or its
slight modification. This classical entropy estimate gives
the minimal expected code length in the Bayesian sense.
Thus this estimate serves the purpose better for many appli-
cations. On the other hand in Bayesian statistics, posterior
distribution is computed with an assumption on the prior
distribution of parameters. Then the quantity of interest is
estimated by expectation with respect to the posterior distri-
bution. Entropy can be estimated in this way, and we refer
this estimate as Bayesian estimate. For n-gram language
models [6], multinomial distribution fits, whose parameters
follow the natural conjugate Dirichlet distribution [4]. The
Bayesian estimate in this case is computed in [14].

Although the classical estimate gives the minimal ex-
pected code length, it can be highly unstable. Therefore
a stability measure will complement and support the clas-
sical entropy estimate, just as error bar does any statistical
estimate.

We propose the difference of these two estimates as a
stability measure of the classical entropy estimate. The ra-
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tionales are (i) the Bayesian estimate is always smaller than
the classical estimate; (ii) the Bayesian estimate is known to
be more stable than the classical estimate; (iii) from global
point of view, both estimates decrease as the size of training
set increases; (iv) asymptotically these two estimates con-
verge to the same limit. Thus when the propose measure is
much greater than the variance of the classical estimate over
the choice of training set, it is then bound to be in strong
positive correlation with the variance.

To compute Bayesian estimates and hence the proposed
measure, posterior distribution is required. Common n-
gram model estimation methods such as discounts and
backoff are not Bayesian approaches and do not result in
posterior distribution. We suggest in such cases to adopt
a Dirichlet distribution for which the compensated sample
counts provided by the estimation methods provide are used
as parameters. We can think of this as modified posterior
distribution obtained by shifting slightly the Bayesian pos-
terior distribution according to external linguistic knowl-
edge. Note that the uncertainty of parameters are preserved
in the modified distribution since the total count is also un-
changed. Thus the proposed stability measure can be com-
puted for the majority of language modeling methods.

Experiments on two benchmark corpora show that the
proposed measure is indeed in strong positive correlation
with the variance of estimates as the size of training data
changes.

This paper is consists of six sections. The first section
is this introduction. We review the Bayesian and classical
estimates of entropy in section 2. The definition and the
analysis of the stability measure is presented in section 3,
followed by its application to language models in section 4.
Experimental results are shown in section 5. We discuss the
use and the limit of our measure in the final section.

2. The Bayesian and classical estimates of en-
tropy

2.1 Multinomial and Dirichlet distributions

We recall the definition of multinomial distribution and
its natural conjugate, Dirichlet distribution [4]. A dis-
crete random vector X = (X1, . . . , Xm) with the con-
straint

∑m
j=1Xj = N , has a multinomial distribution of

dimension m − 1 with parameters N an integer and θ =
(θ1, . . . , θm) where θ is also constrained by

∑m
j=1 θj = 1

by θj > 0 for all j = 1, . . . ,m, when its probability mass
function is given by p(x|θ, N) = N !

∏m
j=1 θ

xj

j /
∏m

j=1 xj !,
for an instance x = (x1, . . . , xm) of X. Here the parameter
θj is the probability that the event j happens, and X j is the
number of the event j in N trials.

A Dirichlet distribution is the natural conjugate distri-
bution for the multinomial distribution, and its probability

density function is of the same form as the above equa-
tion, except that θj’s are considered as random variables
and xj’s as parameters. xj must be strictly positive for all
j = 1, . . . ,m, but they need not be integers. The probabil-
ity distribution function is given as follows.

p(θ|x1, . . . , xm) =
Γ(

∑m
j=1 nj)∏m

j=1 Γ(xj)

m∏
j=1

θ
xj−1
j ,

where Γ(x) is the Gamma function [1]. As shown in the
above equation, it is customary to subtract one from the ex-
ponents, to facilitate computation in the presence of prior
probability. We will refer to

∑
j xj = N as total count, and

each xj as sample count.
The multinomial and Dirichlet distributions are one of

the basic tools of Bayesian statistics. n-gram language
models [6] can be analyzed using these distributions.

2.2 Bayesian estimate of entropy

The entropy H(θ) of the probability mass function given
by θ can be computed as H(θ) = − ∑m

j=1 θj log2 θj .
When θ is unknown,H(θ) itself is a random variable. The
Bayesian estimate of any random variable is the expectation
of it with respect to the posterior distribution. In our case
with Dirichlet posterior distribution, this expectation of en-
tropy is calculated in [14]:

E(H(θ)|D) = −(log 2)−1·
m∑

j=1

xj + 1
N +m

(
ψ(xj + 2) − ψ(N +m+ 1)

)
, (1)

where E(·|D) denotes expectation with respect to the pos-
terior, and ψ(x) denotes the digamma function, defined
as the logarithmic derivative of the Gamma function [1].
At integers, the digamma function has a simple formula:
ψ(x) = −γ +

∑x−1
i=1 i

−1, where x is a positive integer and
γ = limn→∞(

∑n
i=1 1/i − logn) is the Euler constant. In

purely Bayesian case with uninformative prior and without
any modification on the posterior distribution, the parame-
ters are all integers, and eqn. (1) reduces to

E(H(θ)|D) = (log 2)−1
m∑

j=1

xj + 1
N +m

N+m∑
i=xj+1

1
i
.

According to [14], the Bayesian estimate is more sta-
ble than the classical estimate, i.e., the variance is less for
the Bayesian estimate as the training set varies, than for the
classical estimate.

2.3 Classical estimate of entropy

It is customary to estimate entropy by first estimating
the parameters using expectation of the posterior and then
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computing entropy, i.e, by H(E(θ|D)). Comparing this to
the Bayesian estimate E(H(θ)|D) of the previous section,
we see that the order of expectation and entropy is inter-
changed.

In the presence of these two natural choice of estimate,
the question arises: Which one is the better estimate? The
answer depends on where estimates are to be used.

As well known from information theory [7], the code
with log2 pj as the length of each codeword has the minimal
expected code length H(p). Note however, that this result
holds only when p is explicitly known. A simple but often-
unmentioned fact is that the expected code length is mini-
mized by using − log2E(θj |D) as the length of each code-
word, in the Bayesian sense. Indeed, let lj be the length of
each codeword. The average code length is then

∑m
j=1 pj lj .

But pj is never known, and we must replace it by the ran-
dom variable θj , which incorporates our uncertainty about
it. Thus the average code length is a random variable, while
we have to fix lj’s. The Bayesian way is to minimize its

expectation E
(∑m

j=1 θj lj

∣∣∣D)
=

∑m
j=1 E(θj |D)lj . Then

following the same path as in the case where pj’s are known,
we find that this is minimized when lj = − log2E(θj |D).
Thus the classical estimate is the minimal expected code
length.

3. Stability measure of entropy estimate

There are problems which suffers from insurmountable
lack of data. That of estimating language model is one such
instance, where the parameter-to-data ratio ranges from 10 1

to 105. Techniques have been developed to obtain estimates
even for non-observed events, based on linguistic character-
istics. However, there has been little research efforts regard-
ing the stability of the estimates thus obtained. Especially
because of this high parameter-to-data ratio, the stability of
these estimates, i.e, how they vary as the training set does,
is as important as the estimates themselves, when we take
the bias-variance decomposition [9] into account.

We define ∆(D) = H(E(θ|D))−E(H(θ)|D), and pro-
pose ∆(D) as stability measure of entropy estimate. We
will investigate properties of ∆(D) in the following sec-
tions.

3.1 Classical estimate is no less than Bayesian es-
timate

It is well-known that entropy is a concave function of its
arguments [7]. Therefore we may apply Jensen’s inequality
to the two estimates of entropy in the previous section. We
obtain H(E(θ|D)) ≥ E(H(θ)|D), i.e., the Bayesian esti-
mate is a lower bound of the classical estimate. See fig. 1.
Thus ∆(D) ≥ 0.

The magnitude of ∆(D), the difference between two
sides in the above eqn., depends on how much the posterior
distribution p(θ|D) is peaked. When it is severely peaked,
the difference is small, and when it is flat, the difference is
large. This is in the same vein with why bagging works [5].

3.2 Asymptotic behavior of ∆(D)

We will show that ∆(D) → 0 as the size of data |D| ap-
proaches ∞. We need to assume that as |D| → ∞, the pos-
terior distribution p(θ|D) → δη for some fixed η, where δη

denotes the point mass at η. This assumption is not restric-
tive at all. It just states that our belief about the parameter
must be perfectly certain with the infinitude of data, and that
parameters do converge.

Under this assumption, both of the two estimates ap-
proachH(η) as |D| → ∞. Hence, lim|D|→∞ ∆(D) = 0.

3.3 ∆(D) and stability of entropy estimates

We explain in this section why ∆(D) and the variance of
the classical estimate of entropy over the choice of training
set are strongly correlated, and when. Let VarD denote the
latter. Throughout this section, variance always refers to the
variance over the choice of the training set. Let |D| denote
the size of the training set D.

We first observe two tendencies about these estimates: (i)
the Bayesian estimate is more stable, i.e., has less variance
than the classical estimate as we vary the training set; (ii) the
two estimates both decrease from the global point of view,
as |D| increases. (i) is reported in [14], and is also verified
in our experiments. (ii) is due to the property of entropy;
entropy of estimates are always greater than entropy of true
parameters [7].

When ∆(D) is much greater than VarD, e.g., by three or
more orders, the magnitude of ∆(D) will not change much
by different choice of D. In other words, the magnitude of
∆(D) is almost determined by |D|. Thus ∆(D) is in strong
negative correlation with |D|, when it is much greater than
VarD. On the other hand, VarD is also in strong negative
correlation with |D|. This is nothing but one of the fun-
damental principles of machine learning; the more data we
have, the more certain we are about the estimated parame-
ters.

Therefore, ∆(D) and the variance VarD of the classical
estimate over the choice of training set are in strong positive
correlation, when the former is much greater than the latter.
This justifies our proposal to use ∆(D) as the stability mea-
sure of the classical estimate of entropy.

Care must be taken, however, when using this measure.
When VarD gets smaller and becomes similar in order to
∆(D), the above argument does not hold any more. In such
cases, typically ∆(D) itself is very small.
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Figure 1. Bayesian and classical estimates.
The classical estimate is always greater than
the Bayesian estimate, and has greater vari-
ance. When the size of training set is rela-
tively small, the proposed measure and the
variance of the classical estimates are in
strong positive correlation.

Note that the stability of estimates is hard to measure in
any case. Cross validation with enough number of folds is
the only possible way to obtain information about stability,
i.e., the variance of the estimate. However, such method
is computationally expensive, often making it impractical.
Therefore our proposed measure provides valuable infor-
mation at low computational cost.

4. Application to language models

n-gram language models [6] are widely in use as an in-
dispensable tool in speech and character recognition prob-
lems, due to its simplicity and effectiveness. The probabil-
ity of each word in a lexicon to occur following the history
n− 1 words is taken as parameter in n-gram models, under
(n− 1)-th order Markov assumption.

The number of each n-gram in a fixed context thus fol-
lows a multinomial distribution with n-gram probability as
parameters. Those parameters follow Dirichlet distribution
after observing data, in the Bayesian setup. Therefore we
may apply the stability measure ∆(D) of the previous sec-
tion to this problem of estimating parameters of language
model without any change. Purely Bayesian methods with
uninformative prior, sometimes called adding-one, is not
commonly used in language modeling, due to its mediocre
performance. The main problem of this method is that it as-
signs too high probability estimates for unobserved events,
i.e., 1/(N +m), where N is the size of the training corpus
andm the size of the lexicon [8].

On the other hand, since the celebrated Good-Turing

formula [10], a number of estimation methods have been
devised to better estimate parameters of n-gram language
models by adaptation of external knowledge. See [6] for
review of available methods. There are two common tech-
niques in almost all of such methods, i.e., discounting and
backoff. Discounting refers to the technique where the n-
grams observed k times or more with sufficiently large k,
e.g., k ≥ 5, are assigned parameters slightly less than k/N ,
and the portion discounted in such a way is distributed to
the less frequently observed ones. Backoff is the technique
where parameters for infrequently observed n-grams are es-
timated on the basis of parameters for (n − 1)-grams. As
these methods are not developed in the Bayesian setup, only
estimates of parameters are given, not the posterior distri-
bution of them, in all such methods. To apply our stability
measure, we need not only the estimate but also the poste-
rior distribution, of parameters.

We proceed simply by assigning each parameter a
Dirichlet distribution with the total count unchanged and
the compensated sample counts as parameters, so that its
expectation matches the estimates. In effect, the posterior is
slightly shifted according as estimation method recalculate
compensated sample counts. The uncertainty of parame-
ters are also preserved since the total count is unchanged.
Although this distribution is not derived logically with prior
assumption, it incorporates both external knowledge and the
observed data faithfully. This shift is similar to the prior as-
sumption of Bayesian statistics in spirit that external knowl-
edge is incorporated.

We will refer to thus obtained distribution as modified
posterior distribution, and denote it by p(θ|D ′). The stabil-
ity measure computed with the modified posterior distribu-
tion will be denoted by ∆(D ′), or just by ∆.

In the remainder of this section, we will write down ex-
plicit formulas for several specific estimates of language
models. For other smoothing methods, the modified pos-
terior distribution can be found by fixing the total count N
and adjusting each sample count accordingly.

4.1 The case of Good-Turing formula

Good-Turing estimate [10, 6] is an estimate that is cen-
tral in many other smoothing techniques. It is based on
the symmetry principle that all events with the same sam-
ple count must be assigned the same probability. Basically,
to an event with sample count r, we compute the compen-
sated sample count r∗ by r∗ = (r + 1) · nr+1/nr, where
nr denotes the number of the events with sample count r,
or the count-count. Then we assign the probability r ∗/N
to the event. There are variants of this formula to deal with
the case where nr = 0 for some r. In any case, we can
find the the compensated sample count r∗, computed so that∑

r nrr
∗ = N . Thus the modified posterior distribution
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p(θ|D′) is the Dirichlet distribution with N trials and com-
pensated sample counts as parameters.

We may now compute the Bayesian estimate of entropy
based on this. Unlike the Bayesian smoothing method, there
is no extra count of one due to the prior. Taking this into
account with eqn. (1), we obtain

E(H(θ|D′)) = −
∞∑

r=0

nrr
∗

N

ψ(r∗ + 1) − ψ(N + 1)
log 2

Therefore,

∆(D′) =
∞∑

r=0

nrr
∗

N

(
ψ(r∗ + 1) − ψ(N + 1)

log 2
− log2

r∗

N

)

r∗ is in general not an integer and there is no simple formula
for the digamma functionψ(r∗+1) at the non-integer value
r∗ + 1.

For purely Bayesian analysis, the sample count together
with prior is always no less than 1. However, there are cases
where we may have to consider the case with fractional
sample counts, e.g., the language model with discount and
backoff. In such cases, the estimate −(log 2)−1

(
ψ(r∗ +

1)−ψ(N +1)
)

can be quite different from the classical es-
timate − log2 r

∗/N , since the digamma functionψ(x) is an
increasing function on x > 0, ψ(x) → ∞ as x → 0+, and
ψ(x) is negative for x less than approximately 1.46. This
reflects the fact that our knowledge about the true parame-
ter is extremely uncertain.

4.2 The case of backoff

Another indispensable method in language models is that
of backoff. We will describe briefly about Katz backoff
method [11], one of the simplest and most-widely used such
methods. In this method, for unobserved or infrequently-
observed n-grams, the estimates for the lower-orders are
exploited. More precisely, let wi

i−n+1 be n-gram with the
sample count r. Then the Katz backoff method assigns to
it the compensated count cKatz(wi

i−n+1) = drr, if r > 0,
and cKatz(wi

i−n+1) = α (wi−n+1) cKatz
(
wi−1

i−n+1

)
if r = 0,

where cKatz
(
wi−1

i−n+1

)
denotes the estimate of the (n − 1)-

gram wi−1
i−n+1, dr a discount ratio, and α (wi−n+1) a con-

stant chosen in such a way that the total count N is un-
changed. This formula defines cKatz recursively in the size
of n-grams, with unigram estimates given by the usual fre-
quency counts. It is customary to use dr = 1 for r ≥ 5.
The exact formula for dr and α (wi−n+1) can be found
in [11, 6].

The key fact is that the total countN is unchanged in any
case and we have the compensated sample count cKatz(·).
Therefore we may assign the Dirichlet distribution with pa-
rameters N and cKatz(·). The stability measure then can be

Corpus
Language
Model

Var(Tr)
test set
cross
entropy

Var(Test)

KAIST
Unigram 0.999 0.157 0.934
Bigram 0.982 0.987 -0.319
Trigram 0.965 0.999 -0.766

WSJ
Unigram 0.965 0.996 0.996
Bigram 0.982 0.999 0.957
Trigram 0.994 0.989 0.923

Table 1. Correlation with the proposed mea-
sure ∆

computed similarly:

∆(D′) =
∑

all n-grams w

cKatz(w)
N

(
− log2

cKatz(w)
N

+

ψ (cKatz(w) + 1) − ψ(N + 1)
log 2

)
.

5. Experiments

Figure 2. ∆ in log scale, for the KAIST and the
WSJ corpus

The proposed measure was tested on two corpora. One is
the Wall Street Journal text corpus [12] of 1989, consisting
of approximately one million English words. The other is
the 1997 KAIST raw text corpus [13], consisting of thirty
million Korean characters. The total number of unique Ko-
rean characters in this corpus is 2350, all in KS X 1001
character code. The KAIST corpus was collected from var-
ious domains such as literature, law, economics, politics and
science. No linguistic preprocessing was applied to the cor-
pora. A single Korean character plays the role of a single
English word, as far as language model is concerned. Thus
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for the WSJ corpus the lexicon size is relatively large com-
pared to the corpus size, while it is not so for the KAIST
corpus.

Unigram, bigram, and trigram models were trained with
Katz backoff method for each corpus. To measure the vari-
ance of parameters as the train set varies, each corpus are
first randomly divided into the five folds of equal sizes, with
domain ratio maintained as closely as possible. The size of
the training set was varied from one fold to four folds. For
each fixed training set size, the experiment was repeated five
times with the test fold changed. The proposed measure ∆
and the cross entropy are measured for each of the prepared
training sets. Thus there are five different cross entropies
for each fixed training set size, and the variance of them
are also measured. Finally, the test set cross entropy and its
variance for the fixed training set size are measured. For the
training set, cross entropy is measured due to computational
complexity, as an approximation of entropy. The results are
shown in fig. 2.

First, as shown in table 1, there is strong positive corre-
lation between the proposed measure ∆ and the variance of
the training set cross entropy. This is as explained in sec-
tion 3.3. It is more subtle to interpret the result for gener-
alization performance on the test set. What ∆ can measure
is the variance the entropy estimate, only when it is not too
small. For the KAIST corpus, there seems to be enough
data; the models are well-trained and thus the variance of
entropy estimate is small. However for the WSJ corpus, the
variance gets rapidly smaller as more data is used.

In general, there is a strong correlation between the pro-
posed measure ∆ and the test set cross entropy, whenever ∆
is not too small. When ∆ is small enough, the behavior of
the entropy estimate is hard to predict based upon ∆ alone.

6. Discussion

The proposed measure ∆ is experimentally shown to in-
dicate stability of a trained language model. When its scale
is small enough, the model is trained with enough examples,
i.e., stable and ∆ alone cannot provide information on the
generalization performance of the model. When its scale
is big enough, the generalization performance is in strong
positive correlation with ∆.

It is not clear, however, when ∆ is small enough. The
exact threshold will depends on rather intractable amount
of other information. As there is no known criterion for
overfitting, there can be no measure which exactly measures
the variance [9] of generalization error, in principle. The
proposed measure can only help by providing information
on variance part of generalization error.

A threshold of 10−2 for ∆ is recommended based on our
experiment. When ∆ is greater in order than this, there is a
part of error present due to variance. When ∆ is smaller in

order than this, almost all error seem to be due to inherent
bias of the model. An extensive experiment is desirable, to
gain more insight on bias and variance of language models.

Although our interest mainly lies in the problem of lan-
guage models, the proposed measure can be used wherever
the posterior distribution or a similar distribution can be
computed. It should be effective especially in cases where
the parameter-to-data ratio is high and hence parameters are
prone to be unstable.
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