
A Method to Accelerate Writer Adaptation for On-Line Handwriting Recognition

of a Large Character Set

Akira Nakamura

Digital Systems Development Center, SANYO Electric Co., Ltd.

180 Ohmori, Anpachi-Cho, Gifu, 503-0195 Japan

naka@gf.hm.rd.sanyo.co.jp

Abstract

An approach to accelerate writer adaptation for on-

line handwriting recognition is proposed. It is known that

adapting to a writer by learning the writer’s own style

significantly improves recognition accuracy. However,

adapting to a writer can take considerable time until the

performance comes up to a satisfactory level, particularly

for recognition of a large character set. This paper

proposes an adaptation method which uses not only

misclassified patterns but also correctly-classified patterns

as learning samples. The strategy employed in the method

selects acquired prototypes based on their contribution to

classification, while treating the misclassified

prototypes(i.e. the acquired prototypes that were

misclassified before being added) with higher priority

when updating the prototype set. The results demonstrate

that the proposed method improves the performance and

accelerates adaptation especially during the early phase

of adaptation. It is also shown that the method yields

stable improvement in accuracy over a long period of

adaptation with the computational cost acceptable for

most real applications.

1. Introduction

On-line handwriting character recognition has already

been applied to various applications, such as PDA’s and

other pen-based computers. However, users’ demand for

recognition accuracy is still higher than the level achieved

with the existing technology. Even if a classifier is trained

with learning samples written by various writers, it is still

almost impossible to cover all the presumable writing

styles. Consequently, its accuracy could be poor for a

writer whose writing style is not sufficiently covered by the

learning samples.

It is known that adapting to a writer by learning the

writer’s own style improves recognition accuracy. This

approach works well especially on the systems used by a

single writer. Since it would be unacceptable for most

users to be held up by an extra enrollment program before

the normal use of the device, the dynamic writer adaptation

method which improves recognition accuracy during

normal use has been proposed in the works [1-6].

In these works, the input patterns mislabeled by a

classifier are automatically learned based on the user’s

operation selecting the correct class, so that the similar

input patterns will be correctly recognized. In recognition

of handwritten alphanumeric characters, Vuori compared

several adaptation strategies such as adding new

prototypes, deactivating confusing prototypes, reshaping

based on Learning Vector Quantization(LVQ), and their

combinations[2]. Yokota’s approach also employed the

algorithm which reshapes the input pattern by averaging

with the standard prototype before adding it as a new

prototype[3]. Iwayama proposed a hybrid adaptation

algorithm which combines learning misclassified patterns

and learning input strings[4]. Kimura analyzed the effect

of writer adaptation on pen-based computers[5].

Adaptation techniques in off-line word recognition for

HMM-based classifier were studied as well[7]. These

works demonstrate that writer adaptation significantly

improves the recognition accuracy for the writer to whom

the classifier is adapted. However, if adapting to a writer

takes considerable time, the writer needs to be patient until

the performance comes up to a satisfactory level. This is

particularly an issue for recognition of a large character set,

such as Japanese, Chinese or Korean.

In general, writer adaptation for on-line handwriting

recognition poses the following two important issues. One

is, of course,

• To what degree the performance is improved through

adaptation?

and another is

• How much longer does it take to achieve sufficient

accuracy?

Considering from the viewpoint of practical usage, the

second one, which has not been well-discussed apart from

a rare exception in alphabetical word recognition[6], is

particularly a serious issue. Since most users expect to

realize the improvement in accuracy as soon as possible, it

is desirable that writer adaptation can improve the

performance with minimal usage. In other words, the two

issues described above can be expressed as:

• To what degree the performance is improved by

feeding a certain (and possibly limited) amount of input

patterns?

In most of the related works mentioned above, only the

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

misclassified patterns are used as learning samples during

adaptation, except Vuori’s method also uses correctly-

classified patterns based on the k-NN rule[1][2]. Using

only the misclassified patterns seems intuitively reasonable,

however, assuming a correctly-classified pattern is nearby

a decision boundary, in the future such a pattern might

prevent a recognition error caused possibly by a pattern

which is close to it but located on the opposite side of the

boundary. In addition, it should be noted that learning only

the misclassified patterns means the classifier can rarely

acquire new patterns. Suppose an initial recognition rate is

80%, new learning patterns can be obtained only every 5

characters at the early stage of adaptation, and the

frequency will go down as the classifier adapts to the

writer.

In this paper, we propose an adaptation method which

uses not only misclassified patterns but also correctly-

classified patterns as learning samples in order to

accelerate the speed of writer adaptation. This method

employs a strategy for selecting acquired prototypes on the

basis of their contribution to correct/erroneous recognition.

The method treats the misclassified and correctly-

classified patterns equally when they are added to the

prototype set, while the misclassified patterns are given

higher priority to be kept than correctly-labeled ones after

being added. Positive and negative effects of both the

misclassified and correctly-classified learning samples are

also evaluated. The results show that the proposed method

improves the performance and accelerates adaptation

particularly during the early phase of adaptation.

2. Writer adaptation method

2.1 Overview of recognition system

Figure 1 illustrates the overview of our recognition

system. In the classifier, an input pattern written by a user

is recognized by Okamoto’s prototype-based classifier[8],

and a list of ranked classes associated with their scores is

returned. The list of classes is then verified in the

subsequent post-processing step based on linguistic

knowledge such as character n-grams and/or lexicon, and a

final recognition result is shown on the screen. When the

result is wrong, the user chooses the correct class from the

list.

The standard and the acquired prototype sets contain

the prototypes used by the classifier. The standard

prototype set, which consists of the prototypes generated

from the learning samples written by various writers, is not

modified during the use of the system, while the acquired

prototype set is continuously updated based on the input

patterns and the operations. In order to control the growth

of computational time, the classifier restricts the acquired

prototypes compared with the input pattern to only the

ones with the stroke count between ns-1 and ns+2, where ns

denotes the stroke count of the input pattern. This

restriction, which has been ascertained to be effective in

reducing computational time through a preliminary

experiment, is based on the hypothesis that the variations

in stroke counts with a single writer tend to be small

enough.

Each prototype stored in the acquired prototype set is

associated with its true class, the weight value which

represents its contribution to the classifier, and the

attribute which indicates if it was correctly classified when

it was added to the set. The writer adaptation step updates

the acquired prototype set by deleting an unnecessary

prototype, adding a new prototype and modifying the

weight value associated with each prototype already

acquired.

2.2 Algorithm for acquiring and selecting prototypes

This subsection shows the algorithm for updating the

acquired prototype set. In the following description of the

algorithm, we denote the maximum number of the

prototypes which can be contained in the acquired

prototype set by NP, the current number of the prototypes

actually stored in the acquired prototype set by n, and the

maximum number of the acquired prototypes which belong

to a same class by NC, respectively. The two parameters NP

and NC are incorporated to control the growth of the

acquired prototype set.

Let Ω={ω1, ω2,…, ωM} be the set of M classes and X be

an input pattern which belongs to the class ωk (1≤k≤M).

Receiving L ranked classes C(X)={ω1

X, ω2

X,..., ωL
X}, the

user selects the correct class from the list when the top

candidate ω1

X is not the true class ωk. The acquired

prototype set is then updated in the following way.

(1)Deleting an unnecessary prototype

If the number of the already acquired prototypes which

belong to ωk has reached NC, or the total number of the

prototypes n has reached NP, one prototype is selected and

then deleted before adding X as a new prototype. In both

cases, the misclassified prototypes are given higher

priority than the correctly-classified ones. This is based on

the hypothesis: “the misclassified prototypes probably

contribute more than the correctly-classified ones,

Classification

Post-processing

List of
classes

Standard
prototype set

Input

Writer
Adaptation

Acquired
prototype setSelection

by user

Fig. 1 System overview

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

although adding the correctly-classified ones is expected to

be better than nothing is added.” The algorithm first tries

to select a candidate for the deletion from the prototypes

that were correctly classified when they were added to the

set, and if it fails then selects from the misclassified ones.

In the following description, nωk stands for the number of

the prototypes that belong to ωk.

Case1 (nωk=NC): The least contributive prototype is

selected to be deleted from the ones whose true class is ωk.

If any prototypes that belong to the class ωk were correctly

classified when they were added, the prototype whose

weight value is minimum among them is selected.

Otherwise, the prototype whose weight value is minimum

among all the prototypes that belong to the class ωk is

selected. The selected prototype will be replaced by the

new prototype in the next step.

Case2 (nωk<NC and n=NP): The least contributive

prototype is selected to be deleted from all the prototypes

in the set. If any prototypes were correctly classified when

they were added, the prototype whose weight value is

minimum among them is selected. Otherwise, the

prototype whose weight value is minimum among all the

prototypes is selected. The selected prototype will be

replaced by the new prototype in the next step.

(2)Adding a new prototype

Next, the input pattern X is added to the prototype set

as a new prototype regardless of whether the input pattern

is correctly classified or not, associated with the true class

ωk, the weight value initialized to a certain value, and the

attribute which indicates if it is correctly classified. In

order to focus on the evaluation of the strategies for adding

and selecting prototypes, in this method any algorithm for

reshaping the pattern typified by LVQ is not employed and

hence the input pattern is added as such.

(3)Modifying the weight value

Based on the influence upon classification, the weight

value of each existing prototype is modified in the

Following way.

When ith candidate ωi
X (1≤i≤L) is the correct class and

the candidate class is brought by one of the acquired

prototypes, the weight value of the prototype that brought

the correct candidate is increased by the value

corresponding to the candidate’s rank. Then, if any of the

incorrect candidates ωj
X (1≤j<i) upper than the correct

candidate is caused by one of the acquired prototypes, the

weight value of the prototype that caused the wrong

candidate is decreased by the value corresponding to the

candidate’s rank. The higher the rank, the larger value is

increased or decreased in each case.

3. Experimental results

3.1 Adaptation strategies for comparison
In the experiments described below, we evaluated the

three kinds of the adaptation strategies as follows:

(1)Add All patterns and preferentially Keep Misclassified

patterns (AAKM) : All the input patterns are added to

the prototype set, while the misclassified prototypes are

treated with higher priority than the correctly-classified

ones when the algorithm selects the prototype to be

deleted on the basis of the weight value of each

prototype. This strategy corresponds to the algorithm

described in subsection 2.2.

(2)Add All patterns (AA) : All the input patterns are

simply added to the prototype set and equally treated

when the algorithm selects the prototype to be deleted

on the basis of the weight value of each prototype.

(3)Add Misclassified patterns(AM) : Only the

misclassified input patterns are added to the prototype

set, and the prototype to be deleted is selected on the

basis of the weight value of each prototype. This

strategy corresponds to the common method used in

most related works.

By comparing these strategies, we examined the

behavior of the misclassified prototypes and the correctly-

classified ones.

3.2 Experiment 1 -Effects of adaptation and the

optimum number of prototypes-

Controlling the growth of the acquired prototype set is

one of the important issues, especially for a large character

set. In the first experiment, the three strategies described

above were applied with various values of the upper limit

of the total number of the prototypes. The upper limit of

the number of prototypes per class was set at 10 through

preliminary experiments.

The Japanese character set contains many pairs of

similar classes, and some of them even have identical

shapes. These classes should be classified through

linguistic processing rather than writer adaptation. For this

reason, the post-processing step based on bi-gram

probabilities[9] is also incorporated in the recognition

system, and the experiment was carried out for both cases

where post-processing was enabled and disabled. In this

experiment, the data sets No.1-80 in HANDS-kuchibue

DB[10] were used to generate the standard prototypes, and

the data sets No.101-120 were used as the test samples for

writer adaptation. Each data set in this DB is written by a

single writer. Since the post-processing step is employed,

10154 characters (1537 classes) out of 11962 characters in

each data set, which were sampled in a sequence of

sentences, were used as the test samples.

Shown in Fig.2 is the evolution of the recognition rates

with various values of Np. Each recognition rate plotted is

the total rate from the beginning until the point when the

corresponding number of characters were input to the

classifier, and averaged over the 20 writers. The result

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

shows writer adaptation improves the recognition rates

with increasing input characters, and even at the end of the

experiment the effect of adaptation does not seem to be

saturated yet. AAKM and AA yielded much better result

than AM except during the latter stage when Np=1000, and

AAKM was slightly more accurate than AA. This

demonstrates the use of the correctly-classified patterns

further improves the performance. Best results were

obtained when Np=4000 with AAKM, however,

approximately same accuracy was obtained when Np=2000.

This suggests that 2000 prototypes may be almost

sufficient for writer adaptation with AAKM. The

recognition rates with AM did not changed for different

values of Np. This is because AM obtained much fewer

prototypes than the other two. At the end of this

experiment, the number of the prototypes averaged over

the writers was slightly fewer than 1000 with AM, whereas

AAKM and AA had reached the limit halfway through the

experiment.

Comparing the cases where post-processing was

disabled and enabled, although the difference between AM

and the other two strategies are smaller with post-

processing, the use of the correctly-classified patterns still

yielded better accuracy. The differences of the rates

between the cases where post-processing was enabled and

disabled were approximately 2% for all the three strategies.

This percentage probably corresponds to the pairs of the

similar classes which are difficult to classify through writer

adaptation but can be solved with linguistic knowledge.

Positive and negative effects of the acquired prototypes

are shown in Table.1. In this table, DoE denotes the

decrease of classification error due to the acquired

prototypes, and IoE denotes the increase of classification

error due to the acquired prototypes. DoE and IoE

therefore mean the positive and negative effects of

adaptation, respectively, and (DoE – IoE) corresponds to

the improvement in the recognition rate. The result

indicates that both misclassified prototypes and correctly-

classified prototypes contribute to the improvement,

however, the improvement with AA is mainly due to the

correctly-classified prototypes and the improvement with

AM is, of course, caused by only the misclassified ones.

The strategy AA seems to assign too much importance to

the correctly-classified prototypes, thereby losing much

improvement which could be obtained with the

misclassified ones. This suggests the strategy AAKM,

which uses both misclassified and correctly-classified

input patterns as prototypes while the misclassified ones

are treated with higher priority, has the best balance.

3.3 Experiment 2 –Simulation of adaptation over

a long period-

Having found the effect of writer adaptation not

reaching saturation in the first experiment, we then carried

out a simulation over a longer period. The result of the

first experiment suggests that the data sets which consist of

10154 characters each are not necessarily sufficient for

exploring the process of adaptation, and hence we

increased the patterns by reshaping the characters while

preserving each writer’s style. A character in the original

data sets is reshaped by linear transformation as follows:

DoE (%) IoE (%) DoE – IoE (%)

Effects of misclassified
prototypes 3.794 0.839 2.955

Effects of correctly
classified prototypes 4.800 1.031 3.769AAKM

Total 8.594 1.870 6.724

Effects of misclassified
prototypes 1.985 0.470 1.515

Effects of correctly
classified prototypes 6.160 1.254 4.906AA

Total 8.145 1.724 6.421

Effects of misclassified
prototypes 7.622 1.648 5.974

Effects of correctly
classified prototypes 0 0 0AM

Total 7.622 1.648 5.974

Fig. 2 Evolution of recognition rates
Np denotes the upper limit of the number of prototypes. “-PD” and “-PE” stand for

“Post-processing Disabled” and “Post-processing Enabled”, respectively.

90

91

92

93

94

95

96

97

0 5000 10000

Number o f Characters

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

AAKM-PD

AA-PD

AM -PD

AAKM-PE

AA-PE

AM -PE

90

91

92

93

94

95

96

97

0 5000 10000

Number o f Characters
R

e
c
o

g
n

it
io

n
 R

a
te

(%
)

AAKM -PD

AA-PD

AM-PD

AAKM -PE

AA-PE

AM-PE

90

91

92

93

94

95

96

97

0 5000 10000

Number o f Characters

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

AAKM-PD

AA-PD

AM -PD

AAKM-PE

AA-PE

AM -PE

90

91

92

93

94

95

96

97

0 5000 10000

Number o f Characters

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

AAKM-PD

AA-PD

AM -PD

AAKM-PE

AA-PE

AM -PE

(a)Np=1000 (b)Np=2000 (d)Np=4000(c)Np=3000

Table.1 Positive and negative effects of the acquired
prototypes (Np=2000, post-processing is disabled)

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

(x’, y’)t = (1+δ1
δ3

δ2

1+δ4) (x, y)t

where (x, y) and (x’, y’) denote the coordinates of a point

in a original pattern and a reshaped pattern, respectively,

and δ1, δ2, δ3 and δ4 are the random numbers separately

generated within a certain range. A set of four random

numbers {δ1, δ2, δ3, δ4}, which specifies the degree of

deformation, is generated for every original pattern and

commonly used for all the points in the pattern.

By iteratively applying the transformation described

above, four synthetic data sets were generated from each

of the original data sets. Since most classes contain two or

more patterns in a original set, the pattern before the

transformation was randomly selected from the ones

belonging to the same class. The four random numbers

were generated in the –0.1 to 0.1 range. Figure 3 illustrates

some examples of the generated patterns, as well as the

original ones. In this figure, No.108, 111 and 113 specify

the number of the data sets. As shown, the generated

patterns appear to be preserving the writing styles of the

original ones.

Using the original data sets and the generated data sets,

we conducted the second experiment to simulate

adaptation over a long period. In this experiment, five data

sets from a single writer, namely, the original data set and

four generated sets, were treated as the writer’s test data.

The upper limit of the number of the prototypes was fixed

at 2000, which was found to be suitable in the first

experiment. Shown in Fig.4 are the evolution of the

recognition rates. The recognition rates plotted at the

iteration number 1 are the rates for the original data sets,

plotted at the iteration numbers 2-5 are the rates for the

first to fourth generated data sets, respectively. All the

rates plotted are averaged over the 20 writers. As

illustrated in this figure, the performance was improved at

the second iteration and later. In the case that post-

processing was disabled, AAKM yielded the best

performance until the third iteration, and AM was slightly

more accurate than that afterward. On the other hand, in

the case that post-processing was enabled, AAKM

outperformed throughout the iteration, although the

differences from AM decreased as adaptation proceeded.

It should be noted that AA, whose performance was

better than AM and close to AAKM in the first experiment,

yielded lower performance than AM except at the first

iteration. Regardless of the presence of post-processing,

the accuracy with AA seems to be saturated around the

third iteration. This result demonstrates that using all the

input patterns without any consideration could lead to poor

result than using only the misclassified patterns in the long

run. However, the result also suggests that appropriate use

of the correctly-classified patterns as AAKM may

overcome this problem.

4. Discussion

Through the experiments, appropriate use of the

correctly-classified patterns improves the performance of

writer adaptation particularly during the early phases.

Writer adaptation can be regarded as a kind of on-line

learning, and the degree of improvement at the early stage

is also an important issue. Compared with AM, which uses

only the misclassified patterns, AAKM yields

approximately equivalent improvement with half as many

input characters as AM when the number of input

characters is fewer than 10000, indicating the advantage of

the proposed method.

The performance with AA was close to that of AAKM

at the early stage, but it saturated at the latter stage of the

second experiment. This is probably due to a potentially

useful prototype becoming easily replaced by some other

new prototype as adaptation with AA proceeds, whereas

such a problem are mostly avoided on AAKM. This

problem is basically caused by the fact that the upper limit

of the prototype count is too small for the scale of the

character set. Suppose we could store an infinite number of

prototypes, they would never be replaced at all and hence

AA would possibly yield higher performance. However,

92

93

94

95

96

97

98

99

0 1 2 3 4 5

Iteration Number

R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

AAKM-PD

AA-PD

AM-PD

AAKM-PE

AA-PE

AM-PE

Fig. 4 Result of adaptation
during a long period

Writer #108 �� � Writer #111 �� � Writer #113

(a)

(b)

(c)

(d)

(e)

Fig. 3 Examples of generated characters
(a)original data; (b)-(e)generated data

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

the data sets, which contain about 10000 characters each,

appear to be insufficient to examine with larger values of

Np.

Computational speed is also a serious issue for practical

use. When Np=2000 the computational time with AAKM

was 1.21 times as large as when adaptation is deactivated.

Focusing on evaluating the effects of misclassified and

correctly-classified patterns, we currently employ no

particular measures to reduce the number of prototypes,

such as reshaping existing prototypes instead of adding

new ones. Nonetheless, the current computational time

may be acceptable enough for most real applications.

Obtaining the equivalent performance with fewer

prototypes, say around 1000 or less, would further enhance

the advantage of this method.

The generation of test samples in the second experiment

should be also discussed. The test samples for the

simulation of adaptation over a long period were increased

by simple linear transformation, whose validity has not

been fully verified yet. Motivated by the insufficiency of

learning samples, generation of synthetic patterns with

geometrical transformations has been studied[11]-[13].

Although the purpose of these works is to generate

unbiased patterns to enlarge the data set written by various

writers rather than to preserve the style of a single writer,

knowledge of these works may be applied also to writer

adaptation.

5. Conclusion

In this paper, we have proposed an adaptation method

for handwriting recognition of a large character set. The

proposed method treats the misclassified and correctly-

classified patterns equally when they are added to the

prototype set, while the misclassified patterns are given

higher priority to be kept than correctly-classified ones

after being added to the set. The experimental results have

shown that the proposed method improves recognition

accuracy and accelerates adaptation particularly during the

early phase of adaptation, suggesting that the method may

alleviate the cost of inputted characters for adaptation to

the writer’s style on a practical system. Until the number of

input characters reaches 10000, adaptation with the

proposed method proceeds approximately twice as fast as

the common method.

It has been also found that appropriate use of the

correctly-classified patterns yields stable improvement in

recognition accuracy over a long period of adaptation.

Although the improvement saturates as adaptation

proceeds with the simple approach that equally uses the

misclassified and correctly-classified patterns, the

proposed method, which treats the misclassified patterns

with higher priority when updating the acquired prototype

set, achieves better performance with fewer number of the

prototypes. The current method employs no particular

measures to reduce the number of the prototypes,

nevertheless, its computational cost may be acceptable

enough for most real applications.

Future works involves applying the method for reducing

prototypes while preserving both accuracy and the speed

of adaptation. Obtaining the equivalent performance with

fewer prototypes would further enhance the advantage of

this method. The generation of synthetic sample patterns

for the simulation of writer adaptation should be studied as

well.

6. References

[1]J.Laaksonen, J.Hurri, E.Oja and J.Kangas, “Comparison of
Adaptive Strategies for On-Line Character Recognition”, Proc.
ICANN’98, pp.245-250, 1998.
[2]V.Vuori, J.Laaksonen, E.Oja and J.Kangas, “On-line
Adaptation in Recognition of Handwritten Alphanumeric
Characters”, Proc. 5th ICDAR, pp.792-795, 1999.
[3]T.Yokota, S.Kuzunuki, K.Gunji and N.Hamada, “User
Adaptation in Handwriting Recognition by an Automatic
Learning Algorithm”, Proc. HCII 2001, pp.455-459, 2001.
[4]N.Iwayama, K.Akiyama and K.Ishigaki, “Hybrid Adaptation:
Integration of Adaptive Classification with Adaptive Context
Processing”, Proc. 8th IWFHR, pp.169-174, 2002.
[5]Y.Kimura, K.Odaka, A.Suzuki and M.Sano, “Analysis and
Evaluation of Dictionary Learning on Handy Type Pen-Input
Interface for Personal Use”, Trans. IEICE Japan, Vol.J84-D-II,
No.3, pp.509-518, 2001(in Japanese).
[6]A.Brakensiek, A.Kosmala and G.Rigoll, “Comparing
Adaptation Techniques for On-Line Handwriting Recognition”,
Proc. 6th ICDAR, pp.486-490, 2001.
[7]A.Vinciarelli and S.Bengio, “Writer Adaptation Techniques
in Off-Line Cursive Word Recognition”, Proc. 8th IWFHR,
pp.287-291, 2002.
[8]M.Okamoto and K.Yamamoto, “On-line Handwritten
Character Recognition Method Using Directional Features and
Clockwise/Counterclockwise Direction Change Features”, Proc.
5th ICDAR, pp.491-494, 1999.
[9]M.Nakagawa, K.Akiyama, L.V.Tu, A.Homma and
T.Higashiyama, “Robust and Highly Customizable Recognition
of On-line Handwritten Japanese Characters”, Proc. 13th ICPR,
vol.3, pp.269–273, 1996.
[10]M.Nakagawa, T.Higashiyama, Y.Yamanaka, S.Sawada,
L.Higashigawa and K.Akiyama, “On-line Handwrittern
Character Pattern Database Sampled in a Sequence of Sentences
without Any Writing Instructions”, Proc. 4th ICDAR, pp.376-
381, 1997.
[11]M.Mori, A.Suzuki, A.Shio and S.Ohtsuka, “Generating New
Samples from Handwritten Numerals Based on Point
Correspondence”, Proc. 7th IWFHR, pp.281-290, 2000.
[12]T.Varga and H.Bunke, “Generation of Synthetic Training
Data for an HMM-based Handwriting Recognition System”,
Proc. 7th ICDAR, pp.618-622, 2003.
[13]Y.Waizumi, N.Ebisawa, N.Kato and Y.Nemoto,
“Handwritten Character Recognition Using Learning Pattern
Generation by Nonlinear Normalization”, Trans. IEICE Japan,
Vol.J86-D-II, No.10, pp.1391-1399, 2003(in Japanese).

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

