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Abstract

We present here thorough experimental studies of a
generic approach for developping on-line handwriting
recognition systems. The basic principles of our approach
lead to generic intrinsic properties that we investigate.
These properties allow building various recognition engines
corresponding to different needs in pen-based interaction.
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1 Introduction

We present in this paper thorough experimental studies
of a generic approach for developping on-line handwriting
recognition (on-line HWR) systems that has been partially
presented in [1, 11]. This paper focuses on an extensive ex-
perimental study of our system which is is very similar to the
one presented in previous work, hence we do not present it
in detail here for place reasons. Note that, although we deal
with isolated character recognition only, our approach, being
based on Hidden Markov Models (HMM) character models,
may be further extended to word recognition.

Our approach is based on three basic ideas: the use of a
“high level” representation of on-line handwriting, the deter-
ministic building of an HMM character model from a “high
level” representation and a massive parameter sharing strat-
egy. As we will show, these three ideas together lead to
intrinsic properties such as the ability to learn a character
model from a few (possibly one) samples, the ability to learn
any “simple” graphical character (Korean characters, latin
characters, digits, symbols etc), the possibility to build very
light single-writer systems -running fast and requiring few
memory- for mobile devices as well as writer independent
systems performing similarly to state of the art systems.

In the following, we first present briefly our approach and

its main principles. Then we investigate experimentally the
intrinsic properties of the approach, e.g. its ability to handle
variability and to learn any kind of graphical character from
very few training data. Then we discuss how our work may be
used to build both a recogniton engine adapted to pen-based
interaction for small mobile devices and a writer-independent
recognition engine for standard alphabtetic characters. We
also provide some details on ressource requirements, mem-
ory size and recognition speed and show that our approach
compares well with respect to existing systems.

2 A generic approach for building on-line
handwriting recognition engines

In this section, we briefly present our approach for building
on-line handwriting recognition systems, more details can be
found in [1, 11]. We review the basic principles first, then we
explain how to compute a SLR then how to build a character
model.

2.1 Principles

We detail a little bit more the three main ideas of our ap-
proach. First, we use what we call a Stroke-Level Represen-
tation or SLR (see [1, 11]) of on-line handwriting signals, this
may be viewed as a complex preprocessing. This represen-
tation is richer, and more compact, than classical sequence
of low-level feature vectors. The second idea consists in
deriving automatically, from a given SLR, an HMM work-
ing directly on SLR –we call such HMM Stroke Level HMM
(SLHMM). Combining these two ideas, each training sample
may be transformed into a SLHMM so that the training pro-
cedure consists in selecting a set of SLHMM. This selection
may then be viewed as a choice of HMM models for allo-
graphs of the character. The third idea consists in a massive
parameter sharing strategy that allows the above building of a
SLHMM from a SLR to be efficient. Parameter sharing con-
cerns emission probabilities involved in SLHMM, there are at
the end only few free parameters to define all emission prob-
ability laws of all character HMM models.
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Figure 1. The set of 36 elementary strokes
(noted Σ hereafter) used to describe the shape
of handwriting signals.

A recognition engine consists in a cascade of two HMM
systems. The first system is used to preprocess an input signal
(that has been smoothed, resized and spatially resampled) and
to compute its SLR (§2.2). This SLR is then input to the
second system (§2.3) which is the real recognition engine and
consists in Markovian character models.

2.2 SLR extraction

Basically a SLR R is a sequential representation of the
original signal, it consists in three components (S, D, RS)
with S the shape component, D the size component and RS
the spatial component. The sequence S is composed of N
elementary strokes, i.e. S = s1, . . . , sN where si is one of the
36 elementary strokes of a disctionary Σ of stroke shapes (see
figure 1). The sequence D is also composed of N elements,
i.e. D = d1, . . . , dN where di is the relative size of the stroke
si. The last component RS = rs1, . . . , rsN is the spatial
relations between each stroke si and its predecessing strokes.

To obtain these three components, we consider an HMM
whose states correrspond to the elementary strokes in Σ.
The state emission probability distributions are implemented
through trajectory models. A Viterbi algorithm is used to seg-
ment the original signal into a sequence of elementary strokes
in this segmental HMM. The two other components are then
extracted from this optimal segmentation.

2.3 Recognition Engine

The design of the recognition engine is based on the idea
that an HMM operating on SLR (a SLHMM) may be com-
pletely defined (emission probabilities and topology) from a
given SLR. Based on a SLR R = (S, D, RS) with S a se-
quence of N elementary strokes, we build a Left-Right HMM
λR with N states. Each state of λR is associated with an
elementary shape si, a duration di and spatial relation rsi.

As in [11], the parameters of emission probability laws,
defined over Σ, are shared among all state in all SLHMM of
the system. For example, if two states ei and ej (not neces-
sarily in the same SLHMM) are associated to the same ele-
mentary shape s of Σ, then ∀s′ ∈ Σ, p(s′|ei) = p(s′|ej) =
p(s′|s). This parameter sharing strategy is also applied to the
duration and the spatial component modeling. This strategy
allows reducing significantly the number of free parameters

in the system. Such an heuristic building of SLHMM allows
defining, from a SLR R, a SLHMM λR that handles small
variability around the SLR it is based on. This means that λR
gives high likelihoods for SLR very close to R only. There-
fore the modeling ability of such SLHMM is quite limited. To
build character models able to handle much more variability
(including allographs) we consider character models that are
mixture of SLHMM. The model for character c is a mixture
of SLHMM, denoted by Mc, and the probability of observing
a SLR R′ is given by :

p(R′|Mc) =
Kc∑

k=1

p(R′|λc,k) p(λc,k) (1)

where Kc is the number of SLHMM in the mixture (it
is called the model size in the following), λc,k is the kth
SLHMM of the character c and p(λc,k) is its prior. Hence,
such models may take into account the variability (intra and
inter character as well as intra and inter writer) by increas-
ing the size of character models. This number is an hyper-
parameter that allows to easily choose the tradeoff between
the modeling power of character models and the recognition
system complexity. For writer-independent tasks, model size
of about 20 to 50 are required to reach good performances
whereas for writer-dependent systems a model size equal to
5 is most often enough. The training procedure for a charac-
ter model consists in selecting a set of SLHMM (among the
set of SLHMM built from SLR of training samples) which
best represent this character. This is done with a K-means
like clustering algorithm in SLHMM space, using a distance
between SLHMM.

3 Experiments

We have conducted many experiments in order to deeply
investigate the properties of our approach. We first present
the databases used in our experiments, then we investigate
basic properties of our approach. Next, we discuss the feasi-
bility of building two very different recognition engines with
our approach: a writer-independent system for classical latin
character recognition and a writer-dependent system for small
mobile devices able to learn fastly any graphical character.
The main problem for the writer-independent system is vari-
ability handling while the problems for the writer-dependent
system are limited training set size and handling of any graph-
ical character. At last, we compare our system to other recog-
nition engines in terms of computational ressources required.

3.1 Databases

3.1.1 Digits, Lowercase and Uppercase Letters
(UNIPEN database)

The UNIPEN database [6] is a standard benchmark to eval-
uate on-line HWR system. In this work, we use part of the
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(a) (b) (c) (d) (e)

Figure 2. Variability and complexity of Korean characters: two

different writing styles for the same character (a) and (b); three char-

acters with similar writing styles (c), (d) and (e).

Figure 3. Miscellaneous symbols of LIP6 database.

database (version R01/V06) containing isolated digits, upper-
case and lowercase letters (directories 1a, 1b and 1c). This
part of the database contains signals from more than 200 writ-
ers with 15719 digits (resp. 22683 uppercase and 59691 low-
ercase letters) in the whole.

3.1.2 Digits and Korean characters (KAIST database)

The KAIST database1 contains on-line handwriting signals
from Korean highschool students. In this work, we use part of
the database correspnding to isolated digits and Korean char-
acters from about 20 writers.

The recognition of these Korean characters is difficult
since a character is usually written with several pen lifts, with
or without ligatures and each natural stroke (the drawing be-
tween two pen lifts) may be quite complex. In addition, the
spatial disposition of strokes may be very important to distin-
guish some characters. Figure 2 illustrates such a difficulty:
the figures (a) and (b) show two writing styles of the same
character while figures (c), (d) and (e) show three similar writ-
ings for three different characters. In our experiments, we use
19 distinct characters, those characters for which enough sam-
ples are available for testing in writer-dependent context.

3.1.3 Miscellaneous Symbols (LIP6 database)

We also considered a set of miscellaneous symbols, written
by people in our laboratory, as shown in figure 3. These sym-
bols are used to evaluate more deeply of our system properties
(with respect to spatial information handling) since some of
these symbols share the same shape and can be distinguished
by the spatial positions of their components only. There are
32 symbols. It should be noted that some of these symbols
are not standard; a consequence is that the drawings for these
latter symbols are rather variable, e.g. strokes are not always
written in the same order. There are 60 samples for each sym-
bol written by three writers.

1http://ai.kaist.ac.kr/
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Figure 4. Recognition results for varibility in the drawing (a) and

inter-writer variability (b).

3.2 Intrinsic properties of our approach

The objective of this subsection is to investigate the behav-
ior of our systems in different settings concerning the writing
style variability, the inter-writer variability and the training
set size.

3.2.1 Variability in the drawing

These first experiments investigate writing complexity han-
dling through character recognition results for character of
various complexities in single writer mode only. As the
database for each writer is limited, we considered two-fold
cross-validation for each writer and averaged results. In these
experiments, we consider only characters and writers for
whom we have at least 10 samples. This represents 14 writers
for digits (from UNIPEN and KAIST database), 5 writers for
lowercase letters, 7 writers for uppercase letters, 5 writers for
Korean characters and 3 writers for misc. symbols. The re-
sults are compiled in figure 4 (a). It is not straightforward to
compare all these accuracies since these do not correspond to
a same number of writers and characters. The main point is
the systematic increasing of accuracies when the model size
increases, and that in any case recognition rate of 95% may
be achieved, whatever the characters.
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3.2.2 Writer variability

In order to study the behavior of our approach with writer
variability, we conducted experiments with the digits from the
UNIPEN database with different numbers of writers. Figure
4 (b) shows recognition rates for single writer experiments
as well as for writer-dependent experiment with 10, 15 and
more than 200 writers. For each experiment, results are given
for different character model sizes. One may see that for a
given model size, recognition rates naturally decreases when
the number of writers increases (the recognition task become
more difficult). But here again increasing model size allows
taking into account the increased variability and reaching high
accuracies (up to 94%), even with more than 200 writers.

These results suggest that the model size is a simple
mecanism for controling the recognition system quality.
Adapting the system complexity as a function of desired ac-
curacy may also be done by choosing adapted model size. As
we will see in the following (§3.3), recognition accuracy may
still be improved by using a larger system.

3.2.3 Training set size

In this subsection, we are concerned with the performance
of systems with limited training set size. Since a character
model is based on SLHMM that are built from training sam-
ples, one can build a new character model from one training
sample. To highlight this property, we have conducted exper-
iments in single writer mode, using simple characters (digits)
as well as complex characters (Korean characters) from the
KAIST database, by varying the training set size and for var-
ious model sizes. Again, to avoid the bias due to the training
set size, we performed cross-validations and averaged results.

Figures 5 (a) and (b) show average accuracies as a function
of the training set size per character and for a few maximum
model sizes. From these results, one may see that accuracies
of 75% to 84% are reached with only one training sample per
character and that higher recognition rates (up to 95%) may
be reached with only 10 training samples per character.

3.3 Design of recognition systems

The above experiments have shown some main properties
of our approach which may be useful in the design of recogni-
tion systems adapted to different contexts. We show now how
our approach may be used to build two very different engines.

3.3.1 Pen-based interacttion for small mobile devices

The results in the previous sections have shown that our ap-
proach allows building single-writer recognition systems with
high accuracies (figure 4 (a)) for various graphical charac-
ters. Furthermorte, high performances were reached using
only very limited training material. Together, these two com-
ments mean that a user could easily use the recognition engine
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Figure 5. Recognition accuracies in single writer experiments for

various model sizes and training set sizes: for digits (a) and Korean

characters (b).

to recognize his own symbols but also abreviations or com-
mand gestures, the only requirement is to provide a few train-
ing samples per character or symbol to learn. This makes the
personalization of the recognition engine very easy and pow-
erful, which is an essentiel property for pen-based computer
as pointed out by computer-Human Interaction (CHI) studies
[10]. Finally, we will see in the following (§3.4) that the com-
putational ressources required for a single-writer recognition
engine are very limited. For a 26 charaters recognizer, the
system requires a few hundred Kilo bytes (model size about
5) and allows recognizing a few hundred characters per sec-
ond on a standard pentium III 500 MHz machine. Therefore
this kind of system could be reasonnably implement on small
mobile devices which limited computational ressources.

3.3.2 Writer-independent system for standard charac-
ters

In this subsection we show that the same approach may be
used to build a writer-independent system for standard char-
acters. In order to compare with other recognition systems,
we used signals from the UNIPEN database. As usual, the
writer-independent context is splitted in two sub-tasks: multi-
writer and writer-independent recognition. Table 1 compares
recognition accuracies of our systems with various model
sizes to some existing recognition systems. Results are given
for different sizes of the training set size, given as a percent-
age of the whole database. From these results, one may see
that our approach allows to reach (with big model size) com-
parable recognition rates to best systems, for multi as well as
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writer-independent recognition tasks. Moreover, in this table
we also present a recognition result named 1-nn where we use
a 1-nn like classifier with the likelihood (equation 1) as dis-
tance. This scheme corresponds to a bigger system but allows
to reach even higher accuracies. We may also remark that
with very limited training set (i.e. 5% of database), we can
already obtain good results.

3.4 Complexity issues

All the results up to now demonstrate the ability of our ap-
proach to perform similarly to state of the art systems for stan-
dard benchmarks but also the ability to develop very different
recognition engines able for example to learn quickly. In this
section, we show that our systems exhibit another important
property –they are economic in terms of memory requirement
as well as in terms of computational complexity. We compare
in the following our systems to existing systems cited above
in the discussion and tables.

3.4.1 Memory requirement

SVM based systems, e.g. [4, 15], require a large amount of
memory to store support vectors. In [4], about 100 support
vectors per character are needed to reach results of Table 1;
according to the authors, this corresponds to 17.5 Megabytes
(Mb) for 26 lowercase letters and 6.7 Mb for 10 digits. Other
systems, such as [15] requires 21 Mb to store all support vec-
tors for 26 uppercase letters. The sn-tuple [13] is in theory
even more memory demanding. Nevertheless, by limiting the
storage to the really observed tuple in the training set, the au-
thor reduced the memory requirement to about 19.3 Mb for
digit recognition task. In comparison, our systems require
much less memory. To give an idea, the storage of all SLR
corresponding to the digit of the UNIPEN database (15719
examples) requires less than 8.2 Mb (the size of a SLHMM
being roughly the same as a SLR). A recognition engine for
26 letters requires about 130 Kb for a model size equal to 5,
about 500 Kb for a model size equal to 20 and 1 Mb for a
model size equal to 50.

3.4.2 Recognition speed

The table 2 compares recognition speed (number of recog-
nized characters per second) for some systems cited in the
table 1 (Machines used for tests are detailed). One may see
here that our systems are really fast comparing to most other
systems especially prototype-based system such as [15].

4 Conclusions

We provided various experimental results in order to in-
vestigate the properties of our approach for on-line HWR.

We have shown that our approach is efficient to model var-
ious graphical characters, allows taking into account the vari-
ability in the drawing as well as inter-writer variability. We
also shown that learning may be done with very limited train-
ing samples. These properties allow developping recognition
engines adapted to pen-based interaction with strong person-
alization features as well as writer-independent systems for
standard characters competing with state of the art recogni-
tion systems.
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% UNIPEN in Recognition systems digits uppercase lowercase

training set multi omni multi omni multi omni

5 SLHMM

model size = 5 92.4 87.5 85.1 80.2 80.9 78.5

model size = 10 94.1 89.9 86.9 82.7 83.5 80.3

model size = 20 95.1 90.7 87.9 83.8 85.0 81.7

model size = 50 95.4 91.9 89.1 84.9 85.9 82.6

20-30 SLHMM

model size = 5 92.3 90.3 84.7 85.6 81.7 80.3

model size = 10 95.1 91.9 86.9 87.8 84.1 82.8

model size = 20 96.4 93.4 88.6 89.1 86.2 84.5

model size = 50 97.1 94.9 89.2 89.5 87.9 85.9

sn-tuple [13] 98.7 97.1 93.7 91.8 90.6 87.8

SDTW [3] 95.5 90.0 88.6

SVM [4] 96.0 92.4 87.9

HMM [9] 92.0

MLP [8] 95.6

knn + SVM [15] 94.8

50-60 SLHMM

model size = 5 93.5 90.7 88.3 87.0 80.9 80.8

model size = 10 95.2 92.3 90.4 89.3 84.3 83.7

model size = 20 96.6 94.5 91.9 90.2 86.7 85.7

model size = 50 97.7 95.9 92.8 91.2 88.2 87.0

1-nn like 98.5 97.2 94.4 92.6 90.7 88.7

sn-tuple [13] 98.8 98.1 95.1 94.0 92.0

knn [12] 98.8 96.6 96.3

HMM Segmental [2] 79.5 69.8

Bayesian Network [5] 95.0

Fuzzy ARTMAP [14] 82.4

HMM [7] 96.8 93.6 85.9

Table 1. Recognition results of recognition systems for characters from UNIPEN database.

Recognition systems Number of characters Recognition speed (#car/sec) Machine

sn-tuple [13] 10 70 300 MHz RS6000 workstation

26 420

SVM with GDTW kernel [4] 26 0.4 AMD Athlon 1200 MHz

Bayesian Network [5] 10 84 IBM ThinkPad T23, 1.13 GHZ

Fuzzy ARTMAP [14] 10 3.57 Pentium 120MHz

HMM [7] - 3.3 180 MHz SGI station

knn [15] with SVM in post-processing 26 2.88 Pentium-II 400 MHz

our system : model size = 5 10 520 Pentium-III 500 MHz

26 230

model size = 50 10 74

26 20

Table 2. Comparaison of recognition speed (given as number of recognized charater per second) between different recognition systems.
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