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Abstract 
 

This paper considers pattern recognition methods 
using distributed coding. These methods permit rapid 
learning from a large number of training samples; their 
recognition speed is high regardless of the size of the 
learning samples. This paper presents both basic 
algorithm and extended algorithms. Experiments with a 
large database of off-line handwritten numeric patterns 
are then described using the power space similarity 
method, being a type of distributed coding. Finally the 
effectiveness of the technique is considered. 
 
 
1. Introduction 
 

In any particular feature extraction method, the number 
of learning samples can be considered to be a basic factor 
determining the performance of pattern recognition and 
learning methods. The fact that the larger the number of 
samples, the higher the recognition rate becomes, applies 
to the majority of learning methods. In the case of the k-
NN method, for example, the recognition rate 
monotonically increases with the number of samples 
unless patterns are inseparable in the feature space. 

Increasing the number of learning samples, however, 
gives rise to several problems. 

With some recognition algorithms, the recognition 
speed drops significantly as the number of learning 
samples increases. It is known that this is a critical 
problem with the NN method [1]. 

With some other recognition algorithms, the learning 
process takes an extremely long time. To decrease the 
time, this type of algorithms deals with learning as an 
optimization problem, and uses various techniques to 
efficiently search for solutions with the smallest effort. If 
a large number of samples and categories are involved, 
however, such algorithms sometimes fail to give proper 
solutions. 

Then, we have a question that: 
"Given a certain learning or recognition method that 

can learn and recognize patterns with high speeds, is it 
possible to increase the recognition rate as more learning 
patterns are provided?" 

We consider this question by proposing a 
learning/recognition model, present experiments and 
analyze the results. We call the model as "distributed 
coding", whose time complexity for recognition is 
constant and independent of the number of learning 
samples. In the case of the simplest model of this type, the 
learning time is proportional to the number of learning 
samples. 

This paper describes the relationships between the 
number of learning samples and the recognition rates that 
have been verified using a database of off-line 
handwritten character patterns. The recognition rate using 
the 1-NN method was measured under the same learning 
conditions to compare the performance. 
 
2. Basic Principles of the Pattern Recognition 
by Distributed Coding 
 
2.1. Distributed Representation of Vectors 
 

We assume that the sizes of any pattern feature vector 
are equal. Therefore the feature space is subset of N-
dimensional hypersphere having its origin in the center. 

Let x be a feature vector. Space Q is defined as a 
discrete hyperspheric space. A number, p, of the points 
close to x in Q are selected. These points are called p 
nearest neighbor points to x in Q, and are expressed as 
Q(x, p). 

Multiple mutually different spaces can be considered. 
If NQ spaces , Q0, Q1,…, QNQ-1, are used to create Qk (x, 
pk), then ∑ kp  points are selected. 

Now let ( )∑= kke pxQN , , and denote 

( )kkj pxQe ,}{ ∪≡  )1,,0( −= eNj K . We call {ej} 

"distributed representation of x." {ej} includes the 
information of x. 

We are concerned about such a case as 
 x ∑≅ jeα                                                         (1) 
and Q, p that suffice above expression. (Note that the 
coefficient α has no sense because vectors ej are in 
hypersphere.) 
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2.2. Mathematical background 
 

We introduce mathematical background for pattern 
recognition by distributed representation . 

Let S be a N-dimensional hyperspherical space. Choose 
one vector v in S. 

 Let ( ) { }.,||||/),(| SuvuvuuWN ∈≤⋅= θθ  Then 

( ) SWN =π . 
The value of ( ) ( )πθ NN WW  ranges from 0 to 1, and 

grows larger and larger as θ  grows. For larger N, it rises 
sharply when θ  is near 2/π . This fact is called as 
"Tendency to Orthogonality" [2]. 

Given points x1, x2, a value of 
∩∪ ),((| 1 kk pxQ |)),(( 2 kk pxQ∪  can be a measure for 

similarity. From the tendency to orthogonality in high 
dimensional spaces, the value is more reliable when the 
distance between x1 and x2 is near. 

Based on this fact, we can constitute such a data 
structure for pattern recognition that there always exist 
learning patterns close to an unknown input pattern. 

If points are distributed randomly in the space, the 
probability that points exist in certain local region 
depends on the average density in the region. If the 
distribution is dense, there exist points statistically stably. 

Thus, we can take a strategy that a large number of 
learning samples should be prepared in order to have  
sufficient density. 
 
2.3. Power Space Similarity Method 
 

To employ the distributed representation, the original 
feature vector space can be any space as far as it is a 
hypersphere, and the space Q and the number p can be 
selected in numerous different ways. 

In this paper, we adopt a method that we call "power 
space similarity method" [3]. It is a distributed 
representation defined as follows: 

±∈ !Nx , ±
−

±= 11 ,, NNNk CCQ K , 
where, 

)}(),1,,0}(12{
|),,,({! 110

jixxNkNkx
xxxxN

jii

N

≠≠−=+−∈
=≡ −

±

L

L

　

　  

}2,}1,1{|{ NkxxxC N
kN −=+−∈≡±  

The nearest neighbor points x0, x1, ... , xN-1 from x to 
±

−
±±

121 ,,, NNNN CCC K  are obtained respectively. 
A basic algorithm for pattern recognition using the 

distributed representation can now be discussed. Because 
Q(x, p) is a subset of Q, it is the element of the powerset 
2Q. Namely, Q(x, p) can be expressed as an element of 
{ }Q1,0 . If such binary vectors are created from spaces Qk 
(there are NQ spaces), a very high-dimensional binary 

vector can be created by arraying all these vector 
elements. This binary vector is expressed as follows: 

b = ( ) { }∑∈ kQ
ib 1,0 . 

This is to map x into a very high-dimensional space. 
When x is mapped into a very high-dimensional space 
whose dimension is higher than the number of samples, it 
always becomes linearly separable. Therefore, it is 
possible to build a linear discriminant function with the 
input layer of ∑ kQ  and the output layer of NC 
elements (See figure 1.). The category is defined as Cj 
(j=0, … , NC -1). 

To recognize an unknown pattern x  x is converted to b, 
and the following equation is calculated: 

∑= ijij wbCxscore ),(                                       (2) 

Category Ck with satisfying k = argmax{score(x, Cj)} 
is the result of recognition. 

score( ) is equivalent to similarity. In this structure, the 
weight coefficient wij ,that allows learning samples to be 
recognized completely can be determined by performing 
the following steps: 

Set all wij to 0. Convert a learning sample x that 
belongs to category Ci to b. If the element bi of b is 1, set 
wij to 1. Perform this procedure on all learning samples. 
Full marks are always obtained regarding learned patterns. 
Therefore, right answers are always obtained except a 
case in which full marks are obtained to two or more 
categories. 

The dictionary only has to memorize information on i, j 
of wij = 1. Calculation of the score only require to judge 
whetherr wij is 0 or 1 for such i as bi = 1. If the number of 
learning samples is defined as NL, there exists an 
algorithm such that the learning time for the dictionary 

)( Le NNO ×  and its recognition time is )( eNO . The size 
of this dictionary is not more than )( Le NNO × . That is, 
the learning time is proportional to the number of learning 

0b

1b
0Cijw

∑ kQ CN

Figure 1. High-dimensional single-layer 
discriminant function model shown in the form 
of a distributed representation. 
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samples, and the recognition time is constant, 
independently of the dictionary size. 
 

 
Figure 3. A numerical example of distributed 
coding. 
 
3. Recognition Experiment 
 
3.1. A Basic Method for  Handwritten Numerals 
 

The relationships between the number of learning 
samples and the recognition rates were studied using 
handwritten numeral patterns. 

This database contains 19,000 samples for each of ten 
numerals. The total number of samples is 190,000. The 
database contains so many samples that it is suitable for 
experiment in this paper. 

Figure 2 shows how a feature vector is created. The 
original pattern is a binary image as shown in figure 2(a). 
The original pattern is eroded gradually and it is also 
dilated and all the patterns are then superimposed to 
create a multi-valued pattern as shown in figure 2(b). The 
pattern is then divided into small grids of equal size, the 
number of which is defined as N. The sum of pixel values 
from each grid is arrayed to form a vector as shown in 
figure 2(c). 

Next, an N-dimensional real number vector created in 
this way is quantized to a vector in N!. Thus the feature 
vector is obtained. Then, it is expressed as a distributed 
representation, as explained in section 2.3. Figure 3 
shows a numerical example applying distributed coding. 
(Although 6-dimensional vector space is used in the 
figure, larger dimension is used in practice.) 
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Figure 4. Relationships between the number of 
learning samples and the recognition rate. 
 

We tested the cases when the numeral pattern is 
partitioned into 3x5, 4x6 or 5x7. So the dimensions of 
feature vectors are 15, 24, or 35 respectively. Figure 4 
shows the results. 

For N=15, learning saturation has occurred since the 
dimension is too small. When N=24, saturation is about 

to occur as the number of learning samples increases. 
When N=35, saturation is not observed with the given 

           (a)                    (b)                    (c) 
Figure 2. Preparation of the feature vector for a
handwritten numeral pattern. 

(1) Quantization of a real value vector to a vector in N!
6)710,490,300,150,120( Rv ∈=  

a   ∈+++−−−= )5,3,1,1,3,5(x 6! 
(2) Distributed representation of x 

±∈+−−−−−= 161 )1,1,1,1,1,1( Ce  
±∈++−−−−= 262 )1,1,1,1,1,1( Ce  
±∈+++−−−= 363 )1,1,1,1,1,1( Ce  
±∈++++−−= 464 )1,1,1,1,1,1( Ce  
±∈+++++−= 565 )1,1,1,1,1,1( Ce  

∑
=

=
5

1j
jex  

(3) Mapping to binary vector space 
∈1e {(-1,-1,-1,-1,-1,+1), …,(+1,-1,-1,-1,-1,-1)} 

∈2e {(-1,-1,-1,-1,+1,+1), (-1,-1,-1,+1,-1,+1), …, 
(+1,+1,-1,-1,-1,-1)} 

           …. 
b=(1000001000000000000001000000000000000000010

0000000000000100000)
∑∈

±
kC6}1,0{  
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number of samples. If the number of samples is increased, 
the recognition rate seems to improve further. To 
differentiate it from the improved method, which is 
mentioned below, the basic algorithm presented in section 
2.3 is called "type-0". 
 
3.2. Improved Weight Coefficient 
 

Because the structure of this method is characterized by 
the high-dimensional linear discriminant function shown 
by equation (2), we can adjust the weight coefficient w. In 
this section, we take the approach called "ensemble 
learning" [4]. 

It is here assumed that an adequate number of samples 
exist according to the true distributions. Samples, the 
number of which is defined as NL, are drawn randomly to 
make a dictionary. By repeating the process of drawing 
NL samples, we can obtain a multiple number of 
dictionaries. Each of these dictionaries is used to 
recognize an input pattern, and the total of scores given 
by all the dictionaries is considered in the final result of 
recognition. The recognition rate is usually better than 
that obtained by using only a single dictionary. 

If a pattern x is taken randomly from a category C to 
make a dictionary and if x is converted to b = (bi), we 
have the equation shown below, provided that the 
probability that wij is equal to 1 is pij: 

pij = Pr(bi=1 and C= Cj). 
This ultimately leads to one linear discriminant 

function that has LN
ijp )1(1 −−  as its weight coefficient wij 

(see Figure 5). 
This makes it possible to achieve the same recognition 

speed as the type-0 algorithm without increasing the 
memory area. 

In practice, however, a true probability of occurrence 
pij cannot be obtained. Because an approximate value 

ijp̂ can be obtained from a group of samples, this 
approximate value must be used. To determine an 
optimum NL, test patterns must be prepared in addition to 
learning samples. The value NL that allows the 
recognition rate to reach a maximum value is adopted. 

Figure 6 (a) shows the recognition rates measured in 
the experiment with N=24, where the same learning 
samples were used, as mentioned in section 3.1. It is 
evident that the recognition rates obtained using this 
approach are better than that obtained using type-0. The 
recognition rates obtained using the 1-NN method are 
also shown for the purposes of comparison.  

If the results are compared, based on the same number 
of learning samples, the recognition rates obtained using 
the NN method are better than those obtained using other 
methods. 
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(b) 

Figure 6. Comparison of the recognition rates by 
type-0, type-1, and the NN method. 
 

1,0=ijw 1,0=ijw

[ ] LN
ijij pwE )1(1 −−=

Figure 5. Dictionary structure with a score 
equivalent to the average score given by many 
dictionaries.
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If a larger number of samples are used when employing 
this method, the resultant recognition rates can be 
improved to the level of those obtained using the NN 
method. Figure 6 (b) shows that the recognition rates 
obtained using the NN method with employing 1,000 to 
5,000 sets are equivalent to those obtained using the type-
1 with 3,000 to 18,000 sets. 

This structure adjusts the weight coefficients with 
probability-of-occurrence functions and is defined as the 
"type-1" algorithm. 
 
3.3. Further Improvement 
 

Another feasible approach is to upgrade the learning 
function by adjusting the weight coefficients for wrong 
learning patterns, considering the distributions of each 
category. 

Based on this approach, an attempt was made to 
optimize the weight coefficients by using AdaBoost [5] 
[6], a typical method of upgrading learning functions. 

In measuring recognition rates using this approach, the 
same experimental patterns were used, N was set to 24, 
and 9,000 sets were used for learning, with various 
learning parameters being tried. Using a particular set of 
parameters, the recognition rate was 97.85%. It was 
verified, therefore, that the recognition performance of 
this method could be increased to be greater than that of 
type-0 and type-1. 

A method of successively updating the weight 
coefficients in some manner is defined as the "type-X" 
algorithm. 
 
 
Table 1. Recognition rates of each method with 

N=24 and 9000 set samples. 
 

 
 
 
 
 
 

 
 
3.4. Speed 
 

In the recognition process using distributed coding, the 
value of wij is searched for in a dictionary of bi = 1. That 
is, the recognition process is completed by performing the 
search and then performing additions of CNN ×− )1(  
times. 

Using the 1-NN method, inner products generated from 
all learning samples must be calculated. Therefore, the 
recognition process is completed by performing 

multiplications and additions of NNL × times. To 
increase the speed of the NN method, various techniques 
are proposed (for example, [7]). The NN method, 
however, calculates the similarity between all the 
categories and is thus not the type of method designed to 
increase speeds at the expense of accuracy. Moreover, it 
has the limitation that the learning time is )( LNO , and 
therefore the number of calculations cannot be decreased. 

Table 2 shows the measured recognition time. In the 
case of the methods proposed in this paper, the 
recognition time is quick and the number of learning 
samples does not affect the recognition speed 
significantly. On condition of the same recognition rate, 
discrimination speed of type-0, 1, and X can become 
about 100 or 1,000 times as fast as the 1-NN method. 
 
 
Table 2. Recognition time per character (Pentium 

III, 800 MHz). 
(milli sec.) 

 
*1 recognition time = feature extraction time (A) + 
discrimination time (B) 
*2 feature extraction time of each method is the 
same. 
*3 recognition time of type-1 and type-X are 
theoretically the same. 
*4 discrimination time of distributed coding may vary 
by implementation. When employing a hash table, it 
depends on the table size. 
 
 
4. Conclusion 
 

A series of pattern recognition algorithms based on 
distributed coding were proposed and tested. 
Characteristics of these algorithms are summarized as 
follows: 

The dictionary has a linear discriminant structure, 
permitting a very fast recognition speed. Similarity can be 
calculated for all the categories. The algorithm can be 
applied to classification problems for a large category set. 

 Recognition rate 
type-0 0.9741 
type-1 0.9767 
type-X 0.9785 
NN method 0.9830 

 
  1-NN 

*4 
type-0

*3 *4 
type-1,X

Feature extraction 
 process (A)         *1 *2 0.063 0.063 0.063 
Discrimination process 
 (B)    

 10,000 samples   3.1 0.009 0.023 
 30,000 samples   8.9 0.009 0.024 
 50,000 samples   14.8 0.009 0.025 
 90,000 samples   26.7 0.009 0.027 
 180,000 samples   53.4 0.009 0.029 
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Type-0 : Learning can be completed by referencing all 
the learning samples only once. The dictionary has a 
linear discriminant structure, and the weight coefficients 
are 0 or1. 

Type-1 : The learning speed is fast. The weight 
coefficients are determined from frequencies of 
occurrence and have real values. 

Type-X : The weight coefficient can be optimized by 
successive learning. The weight coefficients have real 
values. 

Recognition experiments were conducted using real 
patterns, and the relationship between the number of 
learning samples and the recognition rates were examined. 
When compared based on the same number of learning 
samples, it was found that although the recognition rate of 
the new method was initially lower than that of the NN 
method, it is possible to increase the recognition 
performance to the level of that of the NN method. 

The recognition speed is not affected by the number of 
learning samples, and is very fast. This shows that a high-
speed recognition algorithm can be trained to increase its 
recognition rates by employing a large number of training 
samples. 

This study was made with a focus on the adjustment of 
weight coefficients using the power space similarity 
method chosen from various distributed coding methods. 
By making further modifications or improvements, for 
example, by modifying the distributed representation 

method, there is the possibility that a recognition rate 
equivalent to that of the NN method can be achieved.  
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