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Abstract

The purpose of this project is two fold. The first
purpose is to reduce the memory size of our previous
handwriting recognition algorithm based on an HMM
using Self-Organizing Map (SOM) density tying. The
second is to improve recognition capability by incorpo-
rating additional information. SOM density tying re-
duced the dictionary size to 1/7 of the original size,
with a recognition rate of 90.45%, only slightly less than
the original recognition rate of 91.51%. Our additional
feature increased recognition capability to 91.34%.

1 Introduction

Recent developments in pen input devices includ-
ing Personal Data Assistants (PDAs) require good on-
line handwriting character recognition algorithms. The
smaller the machines are, the more difficult the key-
boards to use. Also, those who are not familiar with
keyboards prefer pen input interface. However, small
hand-held devices also have limited memory consump-
tion.

The author’s group proposed a new algorithm for
on-line handwriting recognition, utilizing a discrete
HMM [1]-[2]. The algorithm is fast, one-shot, and with-
out Baum-Welch, with reasonable recognition capabil-
ities. Two issues still require improvement. First is
its memory size requirement when applied to Japanese
character recognition, because of the structure of
Japanese characters. The Japanese characters consist
of 66 Hiragana characters together with many voiced
and voiceless bilabial consonants, 66 Katakana charac-
ters together with many voiced and voiceless bilabial
consonants, and several thousands Kanji characters,
symbols and letters. The HMM proposed in [1]-[2] con-
sists of several thousand models, thus giving rise to a

large memory size, 7 Mbyte. A serious problem arises
when one wants to install the algorithm on a small
hand-held device. This paper presents one of the pos-
sible solutions, among others, with the use of a density
tying scheme by Self-Organizing Map. The resulting
memory reduction is 1/7, with little sacrifice (1.06%)
of recognition capabilities. An early attempt of this
work had been reported in [4].

This paper also discusses improved recognition ca-
pability by an additional feature so to compensate for
the slightly degraded recognition rate. The new pro-
posed feature consists of the coordinates of the stroke
starting point and the stroke endpoint. The new fea-
ture improves recognition accuracy by approximately
1%.

2 Related Works

This section briefly reviews some of the works re-
lated to the present paper. Given a typical hardware
available for on-line character recognition, there are
not much varieties of features: pen position and pen
up/down information, although some hardware pro-
vides pen inclination (pen tilt). Here we try our best
to review those related works, however, it is far from
exhaustive.

• [10] uses the pen direction features with 8 symbols
instead of 16 and uses the density tying .

• In [6], the baseline feature is a 6 dimensional vec-
tor including the writing angle, as well as the pen
up/down bit. Additional features including hight,
space features are proposed and the feature vector
is coded into an M symbols via VQ (Vector Quan-
tization) with M being 256. Baum-Welch is used
to train HMM.

• [7] proposes an HMM structure for recognizing
mathematical symbols where feature vector is sim-
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ilar to the one used in this paper. They use the
Baum-Welch scheme.

3 Preprocessing

Raw data taken from digitizer is at first normalized by
the length and we obtain(
x1(ti), x2(ti), p(ti)

) ∈ IR2 × {0, 1}, i = 1, ..., M (3.1)

where
(
x1(ti), x2(ti)

)
is the pen position and p(ti) is

pen up/down information.
In order to formulate the problem in terms of a dis-

crete HMM, we quantize the data. Consider

V1(t) := v1k ∈ {1, 2}, k = 1, 2
V2(t) := v2l ∈ {1, 2, ..., L}, l = 1, 2, ..., L(3.2)

where V1(t) represents the pen down(= 1)/up(= 2)
information that is already quantized, and V2(t) rep-
resents the angle information that is quantized into L
symbols.

Simplified notation t is used instead of ti. Therefore,
at each resampled time t, there are two symbols that
V1(t) can take, whereas there are L symbols that V2(t)
can take.

Fig. 3.1 depicts the case with L = 16, which is used
in our experiments. The length information of the tra-
jectory is naturally preserved by repetition of the sym-
bol sequence (v1k, v2l). Let l0 > 0 be an (empirical)
”unit” length of a trajectory x(t) on IR2. If a par-
ticular vector x(ti + 1) − x(ti) has length l with an
associated symbol (v1k, v2l), then this particular sym-
bol sequence is repeated every defined unit length l0.
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Fig. 3.1: Quantized
direction

Fig. 3.2: Japanese char-
acter

With L = 16 and with appropriate l0, the trajectory
given in Fig. 3.2 is quantized as

{V1(t), V2(t)} = {(1, 4), (1, 4), (2, 8), (2, 8), (2, 8),
(1, 16), ..., (1, 16), (2, 8), (2, 8), (2, 8),

(1, 16), (1, 16), (1, 16), (2, 8), (2, 8), ...}
where we are slightly abusing our notation for time.
Namely, we specify an appropriate unit time length
ti := kt for some inter k, so that t should have been
ti. We maintain this notation since the new notation
might cause confusion.

4 Discrete HMM for On-line Handwritten
Character Recognition

4.1 HMM Structure for On-line Handwritten
Character Recognition

In order to make an HMM precise, let us first recall
the output symbols as (3.2) defined in the previous
section, and let

O(t) :=
(
V1(t), V2(t)

)
, t = 1, 2, ..., T (4.1)

be the observed output sequence
An HMM of a character

H = H
(
{aij}, {b1

ik}, {b2
il},π, N

)
(4.2)

is defined by the joint distribution of {Q(t),O(t)}T
t=1

given H;

P
({Q(t),O(t)}T

t=1 | H)
=

πQ(1)

T−1∏
t=1

aQ(t+1)Q(t)

T∏
t=1

b1
Q(t)V1(t)

b2
Q(t)V2(t)

(4.3)

where {Q(t)} stands for a hidden state at each se-
quence t, {aij} state transition probability, {b1

ik},{b2
il}

output emission probabilities, {πi} initial state proba-
bility, and N number of states.

In order to tune HMM to our current problem, we
use the left-to-right model.

4.2 Recognition

Learning and recognition are closely related in
HMM. In our recognition algorithm, the proposed
recognition scheme decides that

argmax
H

P
(
{O(t)}T

t=1, Q(T ) = qN | H
)

(4.4)

is the most probable character.

4.3 Learning

4.3.1 Generation of the First Model

Given the first data set

O1(t) =
(
V1(t), V2(t)

)
, t = 1, ..., T1 (4.5)

make a division between O1(t) and O1(t + 1) if

(i) V1(t) �= V1(t + 1), i.e., if the pen up/down infor-
mation changes; or
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(ii) |V2(t) − V2(t + 1)| > θ0, i.e., if the angle variation
exceeds threshold, where θ0 > 0 is an empirical
value;

and then associate the states with O1(t) and O1(t+1),
and determine N .

After state clarification, we assign {aij},{b1
ik},{b2

il},
{πi} as in Section 4.3.4 with C = 1, and generate the
first model.

4.3.2 Model Generation

So far, our algorithm has presumed that the number
of H coincides with the number of different characters.
Modification is necessary because a character may be
written in different stroke orders, and because a char-
acter may have significantly different shape variations.

Thus, an automatic model generation procedure
is necessary. In the following step, we propose a
model generation criterion, normalized log likelihood
ratio. (See [1]-[?])

Let H1

(
{aij}, {b1

ik}, {b2
il}, {πi}, N

)
be the HMM

obtained by the previous steps. Let {Oc(t)}Tc
t=1 be an-

other training set for the same character.

rc =

−logP
(
{O1(t)}T1

t=1,Q(T1)=qNH1

|H1

)
T1

−logP
(
{Oc(t)}Tc

t=1,Q(Tc)=qNH1

|H1

)
Tc

(4.6)

• rc < rth

We create a new model H2 based on {Oc(t)}Tc
t=1,

using the previous steps.

• rc ≥ rth

{Oc(t)}Tc
t=1 is included in the same model as H1,

so we go to Sections 4.3.3 and 4.3.4.

This model generation algorithm has a significant con-
sequence in that it prevents combinatorial explosion of
the number of stored HMM’s for different stroke or-
ders.

4.3.3 Most Probable State Transition

Let {Oc(t)}Tc
t=1, c = 2, ..., C be the rest of the data

sets for training. This data also assigns the state. Sup-
pose the first data is as shown in Fig.3.2 and the new
data is as in Fig.4.1. Because of the stroke connection
in Fig.4.1, which is not present in Fig.3.2, the two data
sets’ results are different numbers of states, giving rise
to difficulty in learning. Our next step in the learning
scheme is to use the A posteriori decoding algorithm
to make an appropriate correspondence between mod-
els with different numbers of states.

Fig. 4.1: The same character as in Fig.3.2 with different
strokes

For {Oc(t)}Tc
t=1, c = 2, ..., C let

1. Set t = 1, state = 1 and Qc(1) = q1.

2. Set t → t + 1 and determine Qc(t).

Qc(t) = argmin
i=state,state+1

P
(
Qc(t) = qi|{Oc(t)}Tc

t=1,H
)

(state �= N)
Qc(t) = qN , (state = N) (4.7)

3. Set state = Qc(t) and repeat 2 to 3.

4.3.4 Determination of HMM Parameter

Let n
(
Oc, qi

)
be the number of repetitions of the

symbol (v1k, v2l) associated with qi. Let n
(
Oc, qi, qi

)
be the number of repetitions of the symbol (v1k, v2l)
while state stays at qi. Let n

(
Oc, qi, v1k

)
be the

number of times where V1(t) = v1k occurs, and let
n
(
Oc, qi, v2l

)
be the number of times where V2(t) = v2l

takes place, and determine.

aij = 0 (i �= j, i �= j + 1), aNN = 1 (4.8)

aii :=
∑C

c=1 n
(
Oc, qi, qi

)
∑C

c=1 n
(
Oc, qi

) , ai+1,i := 1 − aii(4.9)

(i = 1, ..., N − 1), (4.8, 4.9)

b1
ik :=

∑C
c=1 n

(
Oc, qi, v1k

)
∑C

c=1 n
(
Oc, qi

) , (4.10)

b2
il :=

∑C
c=1 n

(
Oc, qi, v2l

)
∑C

c=1 n
(
Oc, qi

) (4.11)

(k = 1, 2, l = 1, ..., L), (4.10, 4.11)
π := (1, 0, ..., 0) (4.12)

4.3.5 Smoothing

The simple procedure described in Section 4.3.4 of-
ten gives rise to a sparse {b2

il}. Smoothing described
below circumvents this problem.

Given {b2OLD
il } obtained in Section 4.3.4, update

them by

b2NEW
il =

L∑
n=1

wlnb2OLD
in (4.13)
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where wln must satisfy

0 < wln,

L∑
l=1

wln = 1 (4.14)

In this report,

wln :=
∫ g(l,n)+π/L

g(l,n)−π/L

f(θ)dθ (4.15)

is used, where

g(l, n) =

{ π
L/2

|l − n| (|l − n| < L/2
)

π
L/2

(
L − |l − n|

) (|l − n| ≥ L/2
) (4.16)

f(θ) =
1

Z(α, σ)

(
α√
2πσ

e−
θ2

2σ2 +
1 − α

2π

)
(4.17)

Z(α, σ) =
∫ π

−π

(
α√
2πσ

e−
θ2

2σ2 +
1 − α

2π

)
dθ (4.18)

Function g(l, n) is the angle between v2l and v2n (see
Fig.3.1), whereas function f(θ) is the sum of the ”Gaus-
sian” and the uniform distribution 1/2π divided by nor-
malization constant Z(α, σ).

5 Memory-Size Reduction, Self-Organizing
Map Density Tying

One of the drawbacks of the HMM described above is
its memory requirement when the number of character
classes and their associated models become large as ap-
plied to the Japanese characters. The Self-Organizing
Map (SOM) [5] Density Tying described below is a so-
lution to this problem. This discipline consists of the
mapping phase and the tying phase. In the mapping
phase, the second emission probabilities {b2

il} gener-
ated by the HMM are mapped into one of the neurons
in an unsupervised manner. In the tying phase, the
generated {b2

il}s are tied by the map organized in the
mapping phase. Therefore, by a clever choice of the
number of neurons, a significant reduction is possible
as reported in Section 7.

5.1 Mapping Phase

Consider an array of neurons, a matrix vmn

vmn := {umn,1, ..., umn,L}, m = 1, ..., R

n = 1, ..., C (5.1)

1. Set t = 0 and initialize vmn(0) randomly.

2. Set t → t + 1 and select input data x(t) randomly

x(t) := {b2
irand,1, ..., b

2
irand,L}mrand ∈ IRL

mrand := ∀[1, ..., M ], irand := ∀[1, ..., Nm] (5.2)

M : the number of HMM models
Nm : the state number of the selected HMM

3. Select the winner neuron index (I, J) ;

(I, J) = argmin
m=1,...,R, n=1,...,C

‖ x(t) − vmn(t) ‖ (5.3)

4. Update the reference vector vmn(t) by the Gaus-
sian Neighborhood Function

vmn(t + 1) = vmn(t) + hcm(t)
(
x(t) − vmn(t)

)
(5.4)

where

hcm(t) := α(t)exp
(
−‖ rc − rm ‖2

2σ2(t)

)
(5.5)

‖ rc − rm ‖2 := (I − m)2 + (J − n)2 (5.6)

α1(t) = α1(0)
M1

M1 + t
, logσ1(t) = logσ1(0) − t

S

5. Repeat 2 to 4

5.2 Tying Phase

Let b2
i := (b2i1, ..., b

2
iL). Our density tying scheme is

performed by

refi := argmin
vmn

‖ b2
i − vmn ‖ (5.7)

where vmn is the vector obtained in the mapping phase.
This way, the large number of the b2

i vectors is com-
pressed into the vmn vectors.

One new HMM will be defined by

HNEW := H
(
{aij}, {b1

ik}, {refi},π, N
)
,

refi = 1, ..., R × C (5.8)

Therefore, a significant memory-size reduction can be
achieved by an appropriate choice of R × C . In the
experiments reported in Section 7, R = C = 33, and
the resulting memory-size reduction is approximately
one-seventh of the original size.

6 Improvement of Recognition Capability

One possible improvement of our original algorithm is
the recognition rates on those characters with relatively
few strokes. Typically, such characters are Hiragana
characters as well as Western letters. In some of the
characters with relatively few strokes, the direction in-
formation (3.2) and its associated number of repeti-
tions tend to be similar to each other which give rise
to similar likelihood values, which, in turn, give rise in-
correct recognition. In order to overcome this problem,
we need some more information. The following posi-
tion information improves the recognition capability.

Let (Xs, Ys), (Xe, Ye) and (Xg , Yg) be the starting
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position, the end position and the center of a charac-
ter, and let

O2 := (Xs, Ys,Xg, Yg,Xe, Ye) (6.1)

Our new recognition algorithm uses (6.2) in stead of
(4.4).

argmax
H

(
P

({O(t)}T
t=1, Q(T ) = qN | H) × P

(
O2 | H))

(6.2)

where P
(
O2 | H)

is the likelihood over O2, which is
also computed by the SOM:

1. Map all O2’s in the data sets into one of the neu-
rons with SOM. (R = 16, C = 16 See 5.1) Here,
we must equalize the numbers of each character
used in SOM.

2. Compute P
(
O2 | H)

by (6.3).

P
(
O2 | H) ∝ P

(H | vIJ

)
=

n(H, NeuronI,J )
n(NeuronI,J )

(I, J) := argmin
m=1,...,R, n=1,...,C

‖ O2 − vmn ‖ (6.3)

• n(H,NeuronI,J ) : number of times that a
particular character model H is mapped into
NeuronI,J .

• n(NeuronI,J ) : number of times that a character
model is mapped into NeuronI,J .

7 Experiment

Database Kuchibue [3] contains Kanji, Hiragana,
Katakana, Western alphabets, numerals, and symbols.
In our experiment, we used 2,976 Kanji (JIS First
Level), 66 Hiragana, 66 Katakana, and 52 Western let-
ters. Each dataset consists of 10,618 characters where
5,643 are Kanji, 4,372 are Hiragana, 487 are Katakana,
and 116 are Western letters. Of the 120 datasets,
Kuchibue 1 to 100(100 datasets) were used for learn-
ing with the following parameter (see Sections 3, 4, and
5): L = 16, l0 = 20, θ0 = 1, rth = 0.45, α1(0) = 0.5,
σ1(0) = 5, M1 = 25000, S = 1000. The number of
states N is uniquely defined by (i) and (ii) of Sec-
tion 4.3.2. In this experiment, N was between 2 and
48.

Our algorithm described in the previous section cre-
ated 3,724 models (Kanji 3,487, Hiragana 71, Katakana
76, Western letters 90). A recognition experiment was
performed against Kuchibue 101 - Kuchibue 120 (20
datasets). Table 7.1 shows the numbers of the models
created.

We have conducted following four experiments.

(1) The original HMM algorithm scheme described in
Section 4.

(2) Experiment (1), in addition to algorithm described
in Section 6.

(3) Experiment (1), in addition to memory-size reduc-
tion with the SOM density tying proposed in Sec-
tion 5. (R = 33, C = 33) See 5.1)

(4) Experiment (2), in addition to memory-size reduc-
tion with the SOM density tying.
(R = 33, C = 33) See 5.1)

Table 7.3 shows the average recognition rates in each
experiment, and Table 7.2 shows the dictionary size
and the recognition speed in each experiment. 1st[%]
denotes the rate recognized correctly.

Fig.7.1 shows examples of characters for which
the recognition capabilities were improved in Exper-
iment (2), and Fig.7.2 shows examples of characters
whose recognition capabilities were not improved in
Experiment (2).

Table 7.1: Generated Models

character number of number of
category classes generated models
Kanji 2,976 3,487

Hiragana 66 71
Katakana 66 76
Letters 52 90
Overall 3,160 3,724

Table 7.2: Dictionary Size and Recognition Speed

Experiment Size [MB] Speed [sec/char]
(1) 7.10 0.5821
(2) 7.41 0.5892
(3) 1.13 0.5905
(4) 1.44 0.6012

Table 7.3: Recognition Rates

character 1st [%]
category (1) (2) (3) (4)
Kanji 93.78 94.21 92.42 92.89

Hiragana 90.12 91.26 89.46 90.69
Katakana 83.07 85.63 82.27 84.95
Letters 68.58 69.05 66.59 67.54
Overall 91.51 92.33 90.45 91.34

8 Discussion

There are significant variations of recognition rates
among the individual Kuchibue data sets (Table 7.3).
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Fig. 7.1: Improved char-
acters

Fig. 7.2: Not improved
charcters

These variations appear to be attributed to the fact
that this database contains a great variety of casualness
in writing those characters.

From Experiment (1), the proposed HMM algorithm
appears to be extremely robust against stroke num-
ber variations while maintaining reasonable robustness
against stroke order variations.

Based on Experiment (2), with the proposed algo-
rithm in Section 6, we improved the recognition rate
by 1%, compared with experiment 1. (See Table 7.3)

According to Experiment (3), with SOM Density
Tying, we successfully reduced the dictionary size to
1/7 of the original, keeping the first recognition rate
90.45%, 1% decline from the original. (See Tables 7.3
and 7.2.)

From Experiment (4), with the proposed algorithm
in Section 6 and SOM Density Tying, we raised the
recognition rate by 1%, over that in experiment 3. (See
Table 7.3)

The memory reduction rate is a function of the ma-
trix size and the number of states. One of the re-
viewers points out an interesting conjecture to the ef-
fect that the memory reduction rate may be approx-
imately (R × C)/

∑M
m Nm. In Experiment (3)-(4),

R×C = 1089,
∑M

m Nm = 87715. So, (R×C)/
∑M

m Nm

is 0.012, while the memory reduction rate was 1/7 (See
Table 7.2). It would be interesting to study relation-
ship between the two quantities.
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