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Abstract

In automatic word recognition, location-scale-rotation
invariant features are important. We will consider rota-
tion invariant moments of 2-D imagery. Two new series
of invariant moments are derived by Lie theory of the
orthogonal transformation group. The infinite series are
expressed in terms of regular moments.

1. Introduction

In automatic word recognition, location-scale-rotation
invariant features are important. One of such invariant
features is an invariant moment, e.g. Hu’s invariant mo-
ments [5-7] or Flusser invariant moments [2-4]. Shen
and Ip [7] concisely summarized the essential idea of
the derivation of rotation invariant moments including
Zernike moments and Wavelet moments. Further, Diami
[1] summarized beautifully the derivation method of in-
variants by Lie algebra of transformation groups related
to the rotation invariant texture descriptor. In this pa-
per we pursue the Lie algebra-based method and derive
two new infinite series of location-scale-rotation invari-
ant moments.

Section 2 reviews classical methods for deriving in-
variant moments proposed in the literature. The ap-
proach based on Lie algebra is also reviewed in Section
3. Using Lie theory, we derive two new series of rotation
invariant moments in Section 4. The series are expressed
in terms of regular moments and will be helpful in ap-
plications to word recognition. Section 5 concludes the
paper.

2. Classical methods for rotation invariants

In this section we briefly review general construction
methods of invariant moments summarized by Shen and

Ip [7]. Let us define a regular moment mp,q of a binary
or gray scale image f(x, y) by

mp,q =

ZZ
xpypf(x, y)dxdy for p, q = 0, 1, 2, ... (1)

and the centroid by

x0 = m10 and y0 = m01. (2)

By the coordinate change:µ
x
y

¶
→
µ
x− x0
y − y0

¶
, (3)

the image f(x− x0, y − y0) becomes location invariant.
Transforming the image from f(x, y) into f(x, y)/m00,
we have the standardized image in scale. Next we think
of rotation invariance. For obtaining rotation invariant
moments, Shen and Ip [7] used the following generalized
moment expression based on the polar coordinate:

Fp,q =

ZZ
f(r cos θ, r sin θ)gp(r) exp(

√
−1qθ)rdrdθ, (4)

where gp(r) is a function of r with index p. Then, the
following proposition holds.

Proposition 1 (Shen and Ip [7]). Let Fp,q be the
generalized moment defined by (4). Then, both of the
norm ||Fp,q|| and the combined moment Fp1,qFp2,q are
rotation invariant, where z means the complex conjugate
of z.

Proof. Let frotated(r cos θ, r sin θ) be a rotated image
by an angle β. Then, it holds that frotated(r cos θ, r sin θ)
= f(r cos(θ − β), r sin(θ − β)), and

F rotatedp,q = Fp,qe
√−1qβ . (5)
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The equation (5) leads the following identity:

||F rotatedp,q ||2 = F rotatedp,q F rotatedp,q = Fp,q Fp,q = ||Fp,q||2.

The same equation also yields the identity:

F rotatedp1,q F rotatedp2,q = Fp1,qFp2,qe
√−1qβe−

√−1qβ

= Fp1,qFp2,q.

Thus, the invariance of the combined generalized mo-
ments is shown.

Note that the generalized moment Fp,q is rewritten as

Fp,q =

Z
Sq(r)gp(r)dr, (6)

where

Sq(r) =

Z
f(r cos θ, r sin θ) exp(

√
−1qθ)dθ. (7)

By this expression of Fp,q, we have the followings.

1. Setting gp(r) = r
p with some constraints on p and

q, we obtain Hu’s moments [5] and Li’s moments
[6].

2. Setting gp(r) to be the following orthogonal poly-
nomials:

gp(r) =

(p−|q|)/2X
s=0

(−1)s (p− s)! rp/2−s
s!(p+|q|2 − s)!(p−|q|2 − s)!

,

we have Zernike’s moment invariants ||FZernikep,q ||.

Note that Shen and Ip [7] used this technique further to
construction of invariant wavelet moments.

3. Lie algebra methods for invariants

In this section we briefly review the Lie algebra
method summarized by Diami [1]. Let f : Rn → R be an
image (usually n = 2 or 3), and Tβ be a transformation
parameterized by a vector β = (β1, ...,β`). A functional
M is said to be invariant under the transformation Tβ
if and only if

M(f(x)) =M(f(Tβ(x))) for all β, (8)

where x = (x1, ..., xn) ∈ Rn. In image analysis,
the transformation Tβ usually represents the Lie-group
transformation. Then, the framework of general moment
invariants can be applied to find invariantsM which are
functions of regular moments in the n-dimensional case.

Definition 3.1. A vector α = (α1, ...,αn) with αi
being a non-negative integer is said to be a multi-index
and the order of α is defined as d =

Pn
i=1 αi.

Definition 3.2. A monomial of a vector x =
(x1, ..., xn) with a multi-index α is defined by xα =Qn
i=1 x

αi
i .

Definition 3.3. The regular moment of the image
f : Rn → R is defined by

mα = mα(f) =

Z
· · ·
Z
Rn
xαf(x)dx. (9)

Definition 3.4. Let Re be the regular moment space
where e = e(d) denotes the dimension of moments up
to the degree d. Further define the regular moment
vector m by m = (mα) : e × 1. Then, the φβ is de-
fined by the function from Re → R induced by the Lie-
transformation such that

φβ(m(f(x)) =m(f(Tβ(x))). (10)

We can assume that φ is a linear function, that is,

φβ(m) = Aβm (11)

where Aβ is an appropriate e× e matrix.

Definition 3.5. The infinitesimal transformation is
defined by

Ui =
∂Aβ
∂βi

¯̄̄
β=0

for i = 1, ..., `, (12)

where Tβ is parameterized such that T0 is the identity
transformation.

Proposition 2 (Diami [1]). The infinitesimal
change of the moment vectorm induced by the infinites-
imal change of β = (β1, ...,β`) is

dm =

ÃX̀
i=1

Uidβi

!
m.

The goal is to derive the functional M satisfying

M(m) =M(φβ(m)). (13)

This is expressed by the increment of M with respect to
β is zero vector, that is,

dM = 0.

Since
dM =


∇M,dm

®
,
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we have

dM =
D
∇M,

³X̀
i=1

Uidβi

´
dm

E
=
X̀
i=1


∇M,Uim

®
dβi

=
X̀
i=1

LiMdβi = 0 (14)

where ∇ = (..., ∂/∂mα, ...)t denotes the nabla operator
and Li =


Uim, ∂/∂m

®
. From this, dM = 0 is equiva-

lent to

LiM = 0 for i = 1, 2, ..., `.

The above argument suggests the following process
of constructing an invariant function M of regular mo-
ments mα.

1. Find the matrix Aβ satisfying the condition:
m(f(Tβ(x))) = Aβm(f(x)).

2. Calculate the infinitesimal generator Li =
Uim, ∂/∂m

®
for i = 1, 2, ..., ` where the matrix

Ui is defined by the formula (12).
3. Solve the system of partial differential equations
LiM = 0, i = 1, 2, ..., `.

See Diami [1] in detail.

4. New series of invariant moments

We restrict our attention to 2-dimensional images
(n = 2). Along the argument in Section 3, we have
the following series of rotation invariants:

Theorem 1. Let

Md =
dX
i=0

µ
d

i

¶
m2
i,d−i for d = 2, 3, ... (15)

be a function of the regular moments mp,q defined by
(1). Then, the function Md is rotation invariant.

Proof. Since the rotation group on R2 is a one pa-
rameter group, we can omit the suffix from Ui defined
by (12) and denote it simply by U . Let

md = (md,0,md−1,1, ....,m0,d)
t : (d+ 1)× 1 (16)

be a vector consisting of all moments with order d. Since
the formula Md of (15) is a function of the vector md,
we only consider the action on md. Now, we must show
that LMd = 0. For showing the relation, it is sufficient
to show that


Umd, ∂Md/∂md

®
= 0.

We consider the regular moment of the rotated image
with angle β, say m0

p,q. Then, it holds that

m0
p,q

=

Z Z
(x cosβ − y sinβ)p

×(x sinβ + y cos β)qf(x, y)dxdy

=

Z Z (
pX
r=0

µ
p

r

¶
(x cosβ)r(−y sinβ)p−r

)

×
(

qX
s=0

µ
q

s

¶
(x sinβ)s(y cosβ)q−r

)
f(x, y)dxdy

=

pX
r=0

qX
s=0

(−1)p−r
µ
p

r

¶µ
q

s

¶
mr+s,p+q−r−s

×(sinβ)p−r+s(cosβ)q+r−s. (17)

In differentiation dm0
p,q/dβ

¯̄
β=0

of the moment (17), only

two terms with (r, s) = (p, 1), (p− 1, 0) survive and oth-
ers vanish.
Now, consider the case q = d−p with fixed d, and let

U : (d+ 1)× (d+ 1) be a matrix defined by (12) in this
case. Then, the row and column of U are correspond-
ing to the moments m0

d = (m0
d,0,m

0
d−1,1, ...,m

0
0,d)

t and
md defined by (16) respectively. Thus, elements of the
matrix U are indexed by a set of numbers {0, 1, ..., d}.
As a consequence of the discussion following the formula
(17), the matrix U has only non-zero elements at posi-
tions (p, p+ 1) and (p+ 1, p) for p = 0, 1, ..., d. Then, it
holds that

Umd, ∂Md/∂md

®
= 2

dX
p=0

{(d− p)mp+1,d−p − pmp,d−p+1}
µ
d

p

¶
mp,d−p (18)

and it is easy to check that the quantity vanishes. This
shows LMd = 0, and completes the proof.

Next we have another series of new invariants with
free parameters.

Theorem 2. Let M be a quadratic form of the mo-
ment vectormd defined by (16). If the form M satisfies
the relation: ∂M/∂md = Vmd with constant matrix V ,
the equation LM = 0 (rotation invariant) holds if and
only if

U tV + V tU = O. (19)

Further, V is a matrix solution of the equation if and
only if V is a symmetric matrix expressed by V =
(U−1)tW with W being some alternative matrix.
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Proof. Under the setup in Theorem 2, we have
Umd, ∂M/∂md

®
=

Umd, Vmd

®
=mt

dU
tVmd.

Hence,
d

Umd, Vmd

®
= 0

if and only if U tV is an alternative matrix satisfying the
equation (19). Further, the matrix V should be symmet-
ric because ∂2M/∂md ∂m

0
d = V . If a symmetric matrix

V satisfies the equations ∂M/∂md = Vmd and (19),
the function M would be rotation invariant.

A. Illustration of Theorem 2

We will derive invariants by Theorem 2 in the fol-
lowing cases with d = 2, 3, 4.

A.1 The case d = 2

It follows that

M =
a

2
m2
20 +

b

2
m2
11 +

a

2
m2
02 + (a−

b

2
)m20m02 (20)

=
a

2
(m20 +m02)

2 − b
2
(m20m02 −m2

11) (21)

is rotation invariant for the case of d = 2, where a and b
are arbitral real numbers. Note that neither m20 +m02

nor m20m02−m2
11 cannot be derived by Theorem 1. We

omit the proof.

A.2 The case d = 3

Set m =m3 = (m30,m21,m12,m03)
t. Then, the ma-

trix U defined by (12) is given by

U =

⎛⎜⎜⎝
0 −3 0 0
1 0 −2 0
0 2 0 −1
0 0 3 0

⎞⎟⎟⎠ ,
and the inverse matrix is given by

U−1 =
1

3

⎛⎜⎜⎝
0 3 0 2
−1 0 0 0
0 0 0 1
−2 0 −3 0

⎞⎟⎟⎠ .
Put

W1 =

⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,
as a matrix of base of alternative matrices. Then, V1 =
(U−1)tW1 is given by

V1 =
1

3

⎛⎜⎜⎝
1 0 0 0
0 3 0 0
0 0 0 0
0 2 0 0

⎞⎟⎟⎠ .

In the same way, for

W2 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎞⎟⎟⎠ , W3 =

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

⎞⎟⎟⎠ ,

W4 =

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞⎟⎟⎠ , W5 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎞⎟⎟⎠ ,

W6 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ ,
we have Vi = (U

−1)tWi as

V2 =
1

3

⎛⎜⎜⎝
0 0 0 0
0 0 3 0
0 0 0 0
−1 0 2 0

⎞⎟⎟⎠ , V3 = 1

3

⎛⎜⎜⎝
2 0 0 0
0 0 0 3
3 0 0 0
0 0 0 2

⎞⎟⎟⎠ ,

V4 =
1

3

⎛⎜⎜⎝
0 0 −1 0
0 0 0 0
0 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , V5 = 1

3

⎛⎜⎜⎝
0 2 0 −1
0 0 0 0
0 3 0 0
0 0 0 0

⎞⎟⎟⎠ ,

V6 =
1

3

⎛⎜⎜⎝
0 0 2 0
0 0 0 0
0 0 3 0
0 0 0 1

⎞⎟⎟⎠ , respectively.
Unfortunately, these Vi do not correspond to any func-
tion M satisfying ∂M/∂m = Vim. So, we must find a
function M whose derivatives ∂M/∂m is expressed by

a linear combination V =
P6

i=1 αiVi because any al-
ternative matrix W is a linear combination of Wi and
the corresponding V is also a linear combination of Vi.
It is shown that V must be symmetric if the equation
∂M/∂m = Vm holds. The symmetry of the matrix V
leads immediately that the coefficients α2 and α5 equal
to zero. After some calculation, it is shown that V is of
the form

V =
1

3

⎛⎜⎜⎝
α1 + 2α3 0 3α3 0

0 3α1 0 3α3
3α3 0 3α1 0
0 3α3 0 α1 + 2α3

⎞⎟⎟⎠ .
Also, any alternative matrix W is expressed in a linear
combination of W1, ...,W6 and the corresponding invari-
ant is a linear combination of these Vi, i = 1, 2, ..., 6.
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Hence we have the invariant:

M(α1,α3) =
1

2
(
α1
3
+
2α3
3
)m2

30

+ α3m30m12 +
α1
2
m2
21 + α3m21m03

+ α3m30m12 +
1

2
α1m

2
12 + α3m21m03

+
1

2
(
α1
3
+
2α3
3
)m2

03 (22)

where α1 and α3 is arbitral real numbers. Actually, it
holds that M(α1,α3) = α3M3,1/6 + α3M3,2/6, where

M3,1 = m2
30 + 3m

2
21 + 3m

2
12 +m

2
03, (23)

M3,2 = m2
30 + 3m30m12 + 3m03m21 +m

2
03. (24)

The invariant M3,1 in (22) is already given by Theorem
1, whereas M3,2 is not.

A.3 The case d = 4

In this case we must obtain a pair of matrices
(V,W ) such that V and W are respectively symmetric
and alternative matrices satisfying U tV =W , where

U t =

⎛⎜⎜⎜⎜⎝
0 1 0 0 0
−4 0 2 0 0
0 −3 0 3 0
0 0 −2 0 4
0 0 0 −1 0

⎞⎟⎟⎟⎟⎠ .
After some elementary calculation, the general solution
is given by

V =

⎛⎜⎜⎜⎜⎝
a 0 2a− b/2 0 a− b/2
0 b 0 b 0

2a− b/2 0 4a− b 0 2a− b/2
0 b 0 b 0

a− b/2 0 2a− b/2 0 a

⎞⎟⎟⎟⎟⎠ ,
and

W = b

⎛⎜⎜⎜⎜⎝
0 1 0 1 0
−1 0 0 0 1
0 0 0 0 0
−1 0 0 0 1
0 −1 0 −1 0

⎞⎟⎟⎟⎟⎠ ,
where a and b are arbitral real numbers. Hence the
invariant with two parameters is given by

M(a, b) =
a

2
m2
40 + (2a−

b

2
)m40m22

+ (a− b
2
)m40m04 +

b

2
m2
31 + bm31m13

+ (2a− b
2
)(m40m22 +m

2
22 +m22m04)

+ bm31m13 +
b

2
m2
13 + (a−

b

2
)m40m04

+ (2a− b
2
)m22m04 +

a

2
m2
04 (25)

=
a

2
M4,1 −

b

2
M4,2 (26)

where

M4,1 = m2
40 + 8m40m22 + 4m40m04 + 4m

2
22

+ 8m22m04 +m
2
04, (27)

M4,2 = 2m40m22 + 2m40m04 + 2m22m04 +m
2
22

− m2
31 − 4m31m13 −m2

13. (28)

Note that Theorem 1 does not give the invariants M4,1

nor M4,2.

5. Conclusion

For 2-D images, we derived two special families of ro-
tation invariant moments by using the Lie group theory.
One of the families is an infinite sequence of the squared
sum of regular moments, and the other is given by the
solution of matrix equations. Both families are, as far
as the authors know, have not been stated explicitly as
a family of rotation invariant moments.
The performance of the proposed families will be ex-

amined through the recognition of handwritten words of
old Syriac ”Estrangelo” somewhere.
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