
Global Shape Normalization for Handwritten Chinese Character Recognition: A
New Method

Cheng-Lin Liu and Katsumi Marukawa
Central Research Laboratory, Hitachi, Ltd.

1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
{liucl,marukawa}@crl.hitachi.co.jp

Abstract

Nonlinear normalization (NLN) based on line den-
sity equalization has been widely used in handwritten
Chinese character recognition (HCCR). Our previous re-
sults showed that global transformation methods, includ-
ing moment normalization and a newly proposed bi-moment
method, generate smooth normalized shapes at lower com-
putation effort while yielding comparable recognition ac-
curacies. This paper proposes a new global transforma-
tion method, named modified centroid-boundary alignment
(MCBA) method, for HCCR. The previous CBA method can
efficiently correct the skewness of centroid by quadratic
curve fitting but fails to adjust the inner density. The MCBA
method adds a simple trigonometric (sine) function onto
quadratic function to adjust the inner density. The ampli-
tude of the sine wave is estimated from the centroids of
half images. Experiments on the ETL9B and JEITA-HP
databases show that the MCBA method yields comparably
high accuracies to the NLN and bi-moment methods and
shows complementariness.

1. Introduction

The performance of handwritten Chinese character
recognition (HCCR) is largely dependent on shape normal-
ization, and the nonlinear normalization (NLN) based on
line density equalization [1, 2] has been widely adopted to
fulfill this task. The line density-based NLN methods, how-
ever, are complicated in computation and the normalized
shapes are not smooth due to the local transformation na-
ture. On the contrary, global transformation methods esti-
mate very few parameters efficiently from global shape fea-
tures and generate smooth normalized shapes. For exam-
ples, the one-dimensional moment normalization method
(centroid alignment without rotation or shearing, as a sim-
plification of Casey’s method [3]) was shown to perform
comparably well to NLN, and a newly proposed bi-moment
method, performs slightly better than the moment method

[4]. Another method that aligns both centroid and charac-
ter boundary, called centr-bound (abbreviation of centroid-
boundary alignment, CBA) method, performs fairly well.

The superiority of CBA, moment and bi-moment meth-
ods indicates that aligning the centroid of character image
to the geometric center is efficient to reduce the within-class
shape variation. The moment and bi-moment methods fur-
ther regulate the extent of central stroke area by re-setting
the boundaries of character area. The CBA method aligns
the centroid and the physical boundaries (the bounds of pro-
jections of stroke area) using quadratic curve fitting. The
quadratic curve is not able to deflect the inner density, how-
ever. To overcome this problem, we propose an improved
CBA method, called modified CBA (MCBA). To adjust the
inner density after quadratic curve fitting, we transform the
coordinates of pixels using a simple trigonometric function,
the sine function of one period. The amplitude of the sine
wave is estimated automatically from the extent of the cen-
tral area of character. This add-on transformation brings on
very little overhead. We will show that the MCBA method
yields comparable recognition accuracies to the NLN and
bi-moment methods.

Unlike the MCBA method, the moment and bi-moment
methods do not align the physical boundaries, and so, the
re-set boundaries may cut off strokes or leave blank mar-
gins in the normalized plane. Due to the different normal-
ized shapes, these methods will generate different recogni-
tion results on some specific character images though their
recognition accuracies are comparable statistically. Hence,
the fusion of their recognition results may yield even higher
performance.

We have also applied the MCBA method to fitting the
line density projections of NLN. The resulting method,
called line density projection fitting (LDPF), generates
smoother normalized images than the original NLN and
yields similar recognition accuracies.

As to other normalization methods, the cosine function
transformation of Guo et al. [5] is also a global transfor-
mation method. Unlike that we estimate the transformation
parameters from the character shape features, they trans-
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formed the character image into multiple normalized im-
ages using pre-specified parameters and then selected the
best performing one. Jin et al. extended the trigonometric
transformation functions to generate more flexible deforma-
tions but the parameters remain artificially specified [6]. On
the other hand, the class-dependent normalization [7, 8] and
the two-dimensional extension of NLN [9] are very compu-
tationally expensive.

The rest of this paper is organized as follows. Section 2
describes the MCBA method; Section 3 presents the exper-
imental results, and Section 4 provides concluding remarks.

2. Modified CBA Method

The insufficiency of the CBA method lies in the inabil-
ity of correcting the imbalance of inner/outer density. The
moment and bi-moment methods adjust the inner density by
re-setting the character boundaries. The CBA method fails
to do this because the coordinate mapping function is con-
fined to quadratic and the physical boundaries are taken. In
the modified CBA (MCBA) method, on quadratic coordi-
nate mapping, we further adjust the inner density using a
sine function. The period of the sine function is fixed and
its amplitude is estimated from the extent of the central area
of character image.

For convenience of illustration, we assume that the coor-
dinates of both the input image and the normalized image
have been re-scaled to [0, 1]. The CBA method then aligns
three points {0, xc, 1} or {0, yc, 1} (the centroid coordinates
xc and yc have been re-scaled as well) to {0, 0.5, 1}. In the
following, we describe the coordinate mapping functions of
x-axis, while those of y-axis can be obtained by simply sub-
stituting x with y.

Because the bounds of coordinates are scaled to 0 and 1,
the quadratic function for centroid alignment is simplified to
ax2+bx. Fig. 1(a) shows two curves of quadratic functions.
The curve “A” aligns a centroid with xc < 0.5 to the center
0.5 and effects in expanding the character image in the left
and compressing in the right, while the curve “B” aligns
a centroid with xc > 0.5 and effects in compressing the
character image in the left and expanding in the right.

Denote the coordinate after centroid alignment by z =
ax2 + bx, we further adjust (stretch or compress) the inner
density using a sine function of one period. The coordinate
mapping function is

x′ = z + η sin(2πz), z ∈ [0, 1], (1)

where η is the amplitude of the sine wave. Fig. 1(b) shows
two curves of functions for adjusting inner density. The
curve “C” has η < 0 and effects in stretching the inner area,
while the curve “D” has η > 0 and effects in compressing
the inner area.

The combination of quadratic function and sine function
results in a coordinate mapping function that can both align

the centroid and adjust the inner density:

x′ = ax2 + bx + η sin(2π(ax2 + bx)). (2)

Fig. 1(c) shows four curves of combined mapping functions.
The curve “A*C” combines the effects of compressing the
right and stretching the inner, the curve “A*D” combines
the effects of expanding the left and compressing the inner,
the curve “B*C” combines the effects of compressing the
left and stretching the inner, and the curve “B*D” combines
the effect of expanding the right and compressing the inner.

Considering that the deformations of handwritten char-
acters mainly appear to be the skewness of centroid and
the imbalance of inner/outer density, the combination of
quadratic function and sine function is able to correct very
well these deformations, and consequently, lead to high
recognition performance.

2.1 Parameter estimation

The amplitude of the sine wave is the only parameter
of coordinate mapping function for adjusting inner density.
It can be estimated from the extent of the central area of
character image. We truncate the central area with the local
centroids of the half images left/right (or upper/lower) to
the global centroid (xc, yc). Denote the x-coordinate of the
centroid of the left half by x1 and that of the right half by
x2 (Fig. 2). On centroid alignment with quadratic function,
they are transformed to values z1 = ax2

1 + bx1 and z2 =
ax2

2 + bx2. The extent of the central area is then

sx = z2 − z1 = ax2
2 + bx2 − ax2

1 − bx1. (3)

The bounds of the central area is re-set to be equally distant
from the aligned centroid: 0.5 − sx/2 and 0.5 + sx/2. The
sine function aims to map these two bounds to coordinates
0.25 and 0.75 in the normalized plane. This gives

0.5 − sx

2
+ η sin(2π(0.5 − sx

2
)) = 0.25

and
0.5 +

sx

2
+ η sin(2π(0.5 +

sx

2
)) = 0.75.

These two equations are equivalent and result in

η =
sx/2 − 0.25

sin(πsx)
. (4)

From (4), we can see that when sx < 0.5, η < 0. This
corresponds to the curve “C” of Fig. 1 and indicates that
when the central area is dense (focusing toward the cen-
troid), the sine function will stretch the inner area. When
sx > 0.5, η < 0 corresponds to the curve “D” of Fig. 1
and indicates that when the central area extends outward,
the sine function will compress the inner area.
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Figure 1. Curves of coordinate mapping: (a) quadratic curve fitting for centroid alignment; (b) sine
functions for adjusting inner density; (c) combination of quadratic and sine functions.

Figure 2. Centroid and local centroids of half
images. The central area is enclosed by the
gray rectangle defined by the local centroid
coordinates of four half images.

The amplitude of the sine wave should be constrained
to preserve the monotonicity of coordinates. The mapped
coordinates x′ and y′ must be increasing with x or y:

dx′

dx
≥ 0.

Substituting (2) gives

(2ax + b)[1 + 2πη sin(ax2 + bx)] ≥ 0.

2ax + b ≥ 0 has been satisfied by the monotonicity con-
straint of ax2 + bx, while 1 + 2πη sin(ax2 + bx) ≥ 0 is
satisfied by

− 1
2π

≤ η ≤ 1
2π

. (5)

When the value of η computed by (4) is beyond this range,
we enforce it to be a marginal value −1/2π or 1/2π, which
corresponds to sx = 0.265 or sx = 0.735.

2.2 Line density projection fitting (LDPF)

The proposed MCBA method can also be used to fit the
projections (onto x/y axis) of line densities of NLN. The
line density projections are fitted into smooth coordinate
mapping functions such that the generated normalized im-
age has smoother stroke shapes. In the NLN method, the
horizontal line densities are projected onto x-axis. The pro-
jection values are normalized to unity of sum and then accu-
mulated to give normalized coordinates in [0, 1]. For fitting
the normalized coordinates using MCBA, we pick up the
coordinates (of input image) x1, xc, and x2, that correspond
to normalized coordinates (from accumulation) 0.25, 0.5,
and 0.75, respectively. The coordinate xc is then aligned to
0.5 using a quadratic function. x1 and x2 are used to com-
pute the extent of central area and estimate the amplitude of
a sine function. Finally, the input image is transformed ac-
cording to the fitted coordinate mapping functions instead
of the line density projections.

2.3 Implementation notes

In our experiments, the normalized image plane was set
to 64 × 64 pixels. The aspect ratio of the input image is
partially preserved using the so-called aspect ratio adaptive
normalization (ARAN) strategy [10]. In ARAN, the aspect
ratio R2 of the normalized image is a continuous function of
the aspect ratio R1 of the input image. We adopt the aspect
ratio function

R2 =
√

sin(
π

2
R1).

R1 is calculated by

{
R1 = W1/H1, if W1 < H1

R1 = H1/W1, otherwise
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Figure 3. Examples of character shape nor-
malization.

where W1 and H1 are the width and height of the in-
put image. For linear normalization, line density-based
NLN, CBA and MCBA methods, the width and height are
taken as the extents of stroke projections. For moment and
bi-moment methods, W1 and H1 are re-set according to
second-order moments [4]. If the input image is vertically
elongated, then in the normalized plane, the vertical dimen-
sion is filled and the horizontal dimension is centered and
scaled according to the aspect ratio; otherwise the horizon-
tal dimension is filled and the vertical dimension is centered
and scaled.

Fig. 3 shows some examples of normalization by six
methods: NLN, moment, bi-moment, CBA, MCBA, and
LDPF. In the figure, the leftmost column shows the input
images, and the other columns shows the six normalized
images. We can see that the MCBA method corrects both
the skewness of centroid and the imbalance of inner/outer
density. In the first four rows, the MCBA method stretches
the central area of the input image horizontally. The in-
put image of the fifth row is compressed horizontally in
the central area. The input images of the second and last
rows are apparently skewed with respect to the centroid. We
can also see that the global transformation methods gener-
ate smoother normalized shapes than NLN. The normalized
image generated by LDPF is very similar to that of NLN but
has smoother stroke shapes.

3. Experimental Results

We evaluated the performance of the normalization
methods in HCCR on two large databases: ETL9B and
JEITA-HP. The ETL9B database was collected and released

by the Electro-Technical Laboratory (ETL) of Japan (cur-
rently named the National Institute of Advanced Industrial
Science and Technology (AIST)). It contains the binary im-
ages of 3,036 characters (including 71 hiragana and 2,965
JIS level-1 Kanji), 200 images per category. We used the
first 20 images and the last 20 images of each class for test-
ing, and the rest 160 images for learning classifier parame-
ters.

The JEITA-HP database was originally collected by
Hewlett-Packard Japan and later released by JEITA (Japan
Electronics and Information Technology Association). It
contains the character images of 580 writers, including 480
writers (A0–492 with 13 numbers absent) in DATASET-
A and 100 writers (B0–99) in DATASET-B. Experimen-
tal results on JEITA-HP database have been reported by
Kawatani et al. [11] but their specification of training and
test data is not clear. To compare the results of JEITA-HP
with those of ETL9B, we have figured out the 3,036 cate-
gories of ETL9B from JEITA-HP [4]. Let us refer to the
3,036 images of one writer as a set. We used the first 400
sets of DATASET-A and the first 80 sets of DATASET-B for
training, and the rest 80 sets of DATASET-A and 20 sets of
DATASET-B for testing. The total numbers of images of
training set and test set are 1,441,906 and 303,334, respec-
tively.

From a character image, we extracted chaincode di-
rection features using normalization-base feature extrac-
tion (NBFE) or normalization-cooperated feature extraction
(NCFE). By NBFE, the normalized image is generated, then
the contour pixels are assigned to four orientation planes,
from each plane feature measurements are computed by
blurring (Gaussian filtering and sampling) [12]. While by
NCFE, the contour pixels of the input binary image are as-
signed to orientation planes incorporating coordinate map-
ping [13]. We have improved the performance of NCFE by
generating continuous orientation planes instead of discrete
ones [14]. We also extracted gradient direction feature (grd-
g) from gray-scale normalized image (transformed from bi-
nary character image) [14]. The size of normalized image
and orientation planes was set to 64 × 64 pixels, and from
each orientation plane, we extracted 8 × 8 = 64 measure-
ments. Variable transformation was imposed on each mea-
surement to improve the Gaussianity of feature distribution
[15, 16]. We set the power to 0.5 without attempt to opti-
mize it.

We present the results of two classifiers, namely, Eu-
clidean distance to class mean and modified quadratic dis-
criminant function (MQDF2) [17], both on reduced feature
vector by Fisher linear discriminant analysis [15]. The di-
mensionality of feature vector was reduced to 160 with-
out loss of classification accuracy. The MQDF2 was pro-
posed by Kimura et al. to reduce the storage and computa-
tion of ordinary QDF and to improve the classification per-
formance [17]. In MQDF2, the covariance matrix of each
class is regularized by replacing the minor eignvalues with
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a constant. We set the number of principal eigenvectors to
50. The class-independent constant minor eigenvalue was
heuristically set to be proportional to the average feature
variance and the multiplier was selected to maximize the
accuracy on a holdout set randomly extracted from the train-
ing set. The parameters of MQDF2 were then re-estimated
on the whole training set. We speeded up the classifica-
tion of MQDF2 by selecting 100 candidate classes using
Euclidean distance. The MQDF2 was then computed on
the candidate classes only.

The recognition rates on two databases are shown in Ta-
ble 1 and Table 2. For line density-based NLN, we give the
results of two line density definitions, namely, “NLN-T” of
Tsukumo et al. [1] and “NLN-Y” of Yamada et al. [2]. We
have given slight modifications to them. Tsukumo et al. did
not specify the line density computation of marginal and
stroke area. We adjusted the values of marginal and stroke
areas empirically so as to achieve high recognition accuracy.
Yamada et al. elaborated the density computation for all
configurations. For improving the recognition performance,
we adopted the modification of Yoshida et al. [18], that re-
defined the line interval of marginal area and the unification
of horizontal and vertical intervals. The LDPF method fits
the line densities computed by the NLN-T.

Table 1. Recognition rates (%) on ETL9B test
set.

Classify Euclidean MQDF2
Feature NBFE NCFE grd-g NBFE NCFE grd-g
NLN-T 96.59 97.06 97.06 98.82 99.03 98.98
NLN-Y 96.44 96.75 96.83 98.76 98.88 98.89
Moment 96.84 97.06 97.12 98.81 98.95 98.99
Bi-mom 96.90 97.10 97.18 98.85 98.96 99.01
CBA 96.22 96.45 96.57 98.64 98.74 98.79
MCBA 96.59 96.89 96.97 98.76 98.93 98.94
LDPF 96.39 96.78 96.85 98.73 98.94 98.94

Since the accuracies of MQDF2 are significantly higher
than those of Euclidean distance, we focus on the accura-
cies of MQDF2 for comparing the normalization methods.
On both ETL9B and JEITA-HP, we can see that five nor-
malization methods, namely, NLN-T, moment, bi-moment,
MCBA, and LDPF, yield comparable accuracies with the
two good features NCFE and grd-g. When extracting chain-
code feature from normalized images (NBFE), the NLN and
LDPF perform inferiorly on JEITA-HP, probably because
the normalized images are not smooth though we performed
smoothing after normalization. For all the feature types and
classifiers, the NLN-T outperforms NLN-Y owing to our
modifications to the line density computation. The LDPF
method yields similar accuracies to the NLN-T.

Table 2. Recognition rates (%) on JEITA-HP
test set.

Classify Euclidean MQDF2
Feature NBFE NCFE grd-g NBFE NCFE grd-g
NLN-T 93.18 94.05 93.88 97.57 97.93 97.83
NLN-Y 92.95 93.51 93.48 97.47 97.76 97.68
Moment 93.68 94.14 94.21 97.70 97.93 97.91
Bi-mom 93.76 94.25 94.28 97.76 98.00 97.98
CBA 92.72 93.25 93.33 97.49 97.76 97.73
MCBA 93.52 94.05 94.14 97.74 98.00 97.97
LDPF 93.01 93.66 93.68 97.53 97.88 97.80

As we have analyzed in the above, the normalization
methods generate different normalized shapes and may
give different recognition results on specific character im-
ages though their recognition rates are comparable statisti-
cally. To justify the complementariness of these methods,
we show some character samples that are misclassified by
MQDF2 with NCFE using NLN-T, bi-moment, or MCBA
normalization. Some samples that were given different re-
sults by three normalization methods are shown in Fig. 4.
We can see that if we re-classify according to the votes of
three methods, we can get correct classification to many
samples that are misclassified by individual methods.

Figure 4. Character images misclassified by
MQDF2 using three normalization methods:
NLN, bi-moment, and MCBA.

To evaluate the computation complexity of the methods,
we profiled the CPU times of coordinate mapping by seven
normalization methods. On an input character image, the
CPU time is counted until the transformed coordinates are
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computed. It does not cover either the normalized image
generation or the feature extraction procedure. We imple-
mented the experiments on Pentium4-1.90GHz and aver-
aged the CPU time over the samples of JEITA-HP test set.
The CPU times are shown in Table 3. We can see that the
global transformation methods (moment, bi-moment, CBA
and MCBA) are less computationally expensive than line
density-based NLN. The MCBA method adds little addi-
tional computation overhead to CBA.

Table 3. Processing time of normalization on
JEITA-HP test set.

Method CPU (ms)
NLN-T 0.271
NLN-Y 0.387
Moment 0.049
Bi-moment 0.051
CBA 0.053
MCBA 0.067
LDPF 0.283

4. Conclusion

The proposed global normalization method, MCBA
method, combines centroid alignment and inner area com-
pressing/stretching, and hence is able to correct both the
skewness with respect to the centroid and the imbalance
of inner/outer density. In experiments of HCCR on large
databases, the MCBA method was shown to yield compara-
bly high recognition accuracies to previous best performing
methods and be complementary on specific samples. The
global transformation methods are readily applicable to on-
line trajectories and gray-scale character images since the
parameters are estimated from one-dimensional projections,
unlike the line density-based NLN that must be computed
on two-dimensional images.
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