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Abstract

This paper investigates the impact of bigram and trigram
language models on the performance of a Hidden Markov
Model (HMM) based offline recognition system for handwrit-
ten sentences. The language models are trained on the LOB
corpus which is supplemented by various additional sources
of text, including sentences from additional corpora and ran-
dom sentences produced by a stochastic context-free gram-
mar (SCFG). Experimental results are provided in terms of
test set perplexity and performance of the corresponding
recognition systems. For the text recognition experiments
handwritten material from the IAM database has been used.

1 Introduction
Offline recognition of general handwritten text has been in-
vestigated since many years [2, 13, 17]. Only recently au-
thors started to take advantage of the integration of n-gram
language models to improve the accuracy of the correspond-
ing recognizers. Today, n-gram modeling techniques are
well established and represent the most frequently applied
language model in today’s speech recognition systems [16].
Furthermore, toolkit support is available for training and
evaluation of such models [4] as well as for their integration
into HMM based recognition systems [19]. The integration
of word bigram language models into HMM based handwrit-
ten text recognition systems has been reported in [14, 18]
while word trigram models were used in [18].

In this paper we address training and use of word bigram
and word trigram language models in the context of hand-
written sentence recognition. Specifically, we compare natu-
ral sentences and random sentences generated by a stochastic
context-free grammar (SCFG) as additional sources of text
for the training of the statistical language models.

The remaining sections are organized as follows. Sec. 2 re-
views related work and Sec. 3 describes the applied method-
ology. Experiments and results are reported in Sec. 4, and
conclusions are drawn in Sec. 5.

2 Related Work
The use of word bigram language models in HMM based
handwriting recognition systems proved to be very effec-
tive [8, 14, 18], while no further improvement was observed
using word trigram language models in [18]. Since millions
of words are required for the training of both bigram and tri-
gram language models, large corpora are needed to estimate
the parameters of these models. As an alternative to natural
text, the use of random sentences generated by a SCFG has
been proposed in [11]. In the following paragraphs exper-
iments and results as reported in [8, 11, 14, 18] are briefly
described.

A word tag bigram language model was used in [8]. In-
stead of relying on word transition probabilities the imple-
mented model bases on the combination of syntactical word
tag transition statistics and word probabilities. Although no
backoff or smoothing technique was used, an increase of the
word recognition rate from 51% to 61% has been reported
for the chosen experimental setup.

The successful use of synthetic data for the training of a bi-
gram language model has been reported in the context of the
Berkeley Restaurant Project in the domain of speech recog-
nition [11]. First, a pseudo-corpus has been compiled by us-
ing a SCFG in generation mode to produce 200,000 random
sentences. This pseudo-corpus was then added to the ini-
tial corpus containing 4,786 sentences to train a new bigram
language model. In an experiment using 364 test sentences
randomly selected from the regular corpus the performance
of the two recognition systems was compared. As a result,
the system using the new bigram language model was able
to reduce the word error rate from 34.6% to 29.6%.

In [14] unigram and bigram language models for medium
sized lexicons are investigated. Making the closed lexicon
assumption, which means that all words from the test set are
included in the lexicon, recognition rates of both unigram
and bigram based recognizers are compared. For different
sizes of the lexicon (2,700-7,700 words) the bigram based
recognizer produced word recognition rates which were be-
tween 9% and 18% higher than the rates of the corresponding
unigram based recognizers.
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Figure 1. A sample sentence from the IAM
Database.

Trigram and bigram language models for medium to large
lexicons (5,000-50,000 words) have been used in [18] to
study the recognition performance of an offline handwritten
text line recognition system. In correspondence to the re-
sults published in [14] the system using the bigram language
model outperformed the system using a unigram model by
10% in average for large lexicons. However, no further im-
provement was achieved using trigram language models. In
order to explain this counter intuitive findings the authors
suggest two possible reasons. First, the individual recogni-
tion of handwritten lines of text restricts the possible benefit
of higher order n-gram models (e.g. the full power of tri-
gram model will only be available after the second word of
each line). Second, the TDT-2 newswire corpus [3], which
was used to train the bigram and the trigram language mod-
els, is not aligned with the actual handwritten texts based on
material from the LOB corpus [10].

3 Methodology

Using an HMM based handwritten text recognition system,
handwritten sentences (see Fig. 1 for an example) are rec-
ognized line by line. For the recognition of a handwritten
text line we are interested in finding the most likely sen-
tence Ŵ = (w1, w2 . . . wn) for a given observation sequence
X = (X1, X2, . . . Xm) provided by the recognizers’ feature
extraction mechanism. The text Ŵ is found according to
Eq. (1), where the sentence probability term p(W ) is pro-
vided by a statistical language model.

Ŵ = argmax
W

p(X |W )p(W ) (1)

Instead of just obtaining the most likely candidate sen-
tences, recognition lattices are produced for the experiments
reported in this paper. A recognition lattice can be inter-
preted as a directed acyclic graph. Such a graph represents
the most promising part of the search space investigated dur-
ing the decoding process [20, 23]. The nodes of a lattice
represent boundaries between candidate words which are as-
sociated with potential segmentation points of the input se-
quence X . The candidate words are attached to the edges of a
recognition lattice and the corresponding recognition scores
are computed using the following formula.

log p(Xi|wi) + α log p(wi|wi−1
1 ) + β (2)

where Xi represents the feature vector sequence associated
with word wi. The score p(Xi|wi) is calculated by the opti-
cal model (the HMM) and the value p(wi|wi−1

1 )1 is provided
by a language model. Since both the HMM and the language
model only produce approximations of the true probabilities
we use two additional parameters, α and β. Their aim is
to partially compensate the deficiencies of the optical model
and the language model. Optimal values for α and β are then
determined by experiment on a validation set [23].

In the following subsections n-gram language modeling
is introduced first. Then generation of random sentences is
described.

3.1 N -Gram Language Modeling
N -gram language models provide a simple approximation
for sentence probabilities based on the relative frequencies
of word sequences of length n. For n = 2 (n = 3) we
use the term bigram (trigram) language model. The sentence
probability p(s) is decomposed into a product of conditional
probabilities p(wi|wi−1

i−n+1)
2 as follows

p(s) =
∏

i=1

p(wi|wi−1
i−n+1) (3)

The n-gram probabilities p(wi|wi−1
i−n+1) are estimated us-

ing the relative frequencies f(wi|wi−1
i−n+1) of the correspond-

ing word n-grams found in large training corpora. To as-
sign positive probabilities to n-grams which have not been
observed in the training text model smoothing is applied.
For the experiments reported in this paper the Good-Turing
smoothing technique [7] together with a backoff to lower or-
der models [12] is used.

In order to evaluate the quality of a statistical language
model the perplexity is the most frequently used mea-
sure. For a given language model M and test text T =
(s1, s2, . . . sn) it is defined using Eq. (4) where si =
(w1, . . . , wni) stands for the ith sentence of the test text.

PPT (M) = 2HT (M) (4)

where HT (M) represents the (cross)entropy of the language
model M for text T . The entropy HT (M) can be estimated
using the sentence probabilities provided by the language
model M as shown below.

HT (M) = − 1
n

n∑

i=1

log p(si) (5)

The perplexity can intuitively be interpreted as the average
number of relevant words in the lexicon. Language mod-
els with lower perplexity values are therefore better suited to

1The term wi−1
1 corresponds to the word history (w1, w2, . . . , wi−1).

2wi−1
i−n+1 corresponds to the truncated word history of length n, i.e.

wi−1
i−n+1 = (wi−n+1, . . . , wi−1).
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’explain’ a test text than models with higher perplexity val-
ues.

3.2 Generation of Random Sentences
Arbitrary amounts of (grammatically correct) random sen-
tences can be produced using a Stochastic Context-Free
Grammar (SCFG) in generation mode. For this paper the
SCFG corresponds to a treebank grammar which is extracted
from the Lancaster Parsed Corpus [6]. After a brief definition
of SCFG and the presentation of the extraction of a treebank
grammar the generation of a sample sentence is described.

A SCFG is a 5-tuple (N, T, P, S, p(.)) where N represent
the set of nonterminal symbols and T the set of terminal sym-
bols, N ∩T = ∅. The set of productions is denoted by P and
S ∈ N is used as the start symbol. All productions of P can
be written as A → α where A ∈ N and α ∈ (N ∪ T )+. Fi-
nally, the probability function p(.) maps productions A → α
into the interval (0, 1] where the probabilities of all A →
αi ∈ P have to satisfy

∑
α p(A → α) = 1.

Treebank grammars can be extracted from corresponding
corpora (also called treebanks) which contain parsed sen-
tences in the form of hierarchical derivation trees (see Fig.2
for an example).

S

NP

Det

the

NN

cat

VP

VBD

ate

NP

Det

the

NN

mouse

Figure 2. A parsed sentence

Using the available derivation trees it is straightforward to
extract corresponding productions. The production proba-
bilities can then be estimated from the relative frequencies
as follows.

p(A → α) =
N(A → α)∑
β N(A → β)

(6)

where N(A → α) represents the number of times the pro-
duction A → α has been observed in the treebank. This
count is then normalized by the sum of the counts of all
productions with the same left hand side A. Applying this
scheme to the parsed sentence from Fig. 2 the SCFG shown
in Fig. 3 is obtained.

For the generation of a random sentence a rewriting pro-
cess is applied in the following way. First, the start symbol
S is rewritten into a string of symbols α by a production
S → α. From the resulting string a nonterminal symbol is

(1.0) S → NP VP (0.5) NN → mouse
(1.0) NP → Det NN (0.5) NN → cat
(1.0) VP → VBD NP (1.0) VBD → ate
(1.0) Det → the

Figure 3. Productions of a stochastic context-
free grammar for a subset of English sen-
tences

selected and rewritten using a suitable production. If several
alternative productions are available, a production is selected
randomly according to its probability. This procedure termi-
nates when no more nonterminal symbols are found in the
resulting string.

S ⇒ NP VP ⇒ Det NN VP ⇒ the NN VP ⇒ the mouse VP
⇒ the mouse VBD NP ⇒ . . .⇒ the mouse ate the cat

Figure 4. Generation of a random sentence

Using the production scheme described above it cannot be
guaranteed that the sentences are semantically meaningful
and the test set may even contain grammatically incorrect
sentences which cannot be generated by the SCFG. There-
fore it is not advisable to extract n-gram language models
directly from random sentences. Instead, random sentences
should be added to an initial corpus of natural text before an
n-gram language model is extracted from the combined set
of sentences.

4 Experiments and Results
The data used for the experiments can be divided into hand-
written material and linguistic resources. For the training
of the character HMM and the recognition of the sentences,
images of handwritten lines of text and complete sentences
were automatically extracted from the segmented version of
the IAM database [15, 21].

Lexica, bigram and trigram language models for the base-
line recognizer were extracted from the tagged LOB cor-
pus [9]. A variable number of additional sentences were
taken from both the Brown corpus [5] and the Welling-
ton corpus [1]. All three corpora contain approximately
1,000,000 running words each and cover a similar variety
of texts chosen for their representative quality of written En-
glish.

The treebank grammar for the generation of the random
sentences has been extracted from the Lancaster Parsed Cor-
pus (LPC) [6] which contains parse trees for 10,000 sen-
tences from the LOB corpus.

For the experimental setup a writer independent environ-
ment, where the set of writers who contributed to the train-
ing, test, and validation set are mutually disjoint was chosen.
The training set consists of 5,799 handwritten text lines in-
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cluding 39,993 word instances written by 448 different per-
sons. Both validation and test set consist of 200 complete
sentences each (average length 20 words), written by 100
writers. The task lexicon is closed3 over the test (valida-
tion) set and includes 8,819 (8,825) words. For the extrac-
tion of the baseline bigram and trigram language model all
sentences from the test (validation) set were excluded from
the tagged LOB Corpus.

The HMM based handwritten text recognition system de-
scribed in [14] is using a linear topology for the character
models. This topology was adopted in the current paper.
However, the number of states was chosen depending on the
individual character [22], and a mixture of eight Gaussians
for each state was used, rather than just a single Gaussian as
reported in [14].

4.1 Optimizing Perplexity
The first set of experiments investigates the effect of addi-
tional training material on the validation set perplexity. Four
different sources of additional sentences are investigated to
enhance the language models trained on the tagged LOB
corpus: random sentences produced by the treebank gram-
mar as well as natural sentences from the Brown corpus, the
Wellington corpus and, the combined Brown + Wellington
corpus4.

The results for the language models including an increas-
ing number of sentences from the different sources of addi-
tional text are provided in Fig. 5. For all types of additional
text the perplexity values achieved by the trigram models
outperformed those obtained by the corresponding bigram
models by approximately 20%. The performance of the ran-
dom sentences is discouraging. An almost linear increase
in perplexity was obtained adding random sentences to the
LOB corpus. While the incorporation of the complete Brown
corpus reduced the perplexity by 6% for trigram model, a re-
duction of 12% was measured when the complete Welling-
ton corpus has been added to the LOB corpus. The combined
Brown and Wellington corpus lead to a perplexity reduction
of 15%.

4.2 Optimizing System Performance
The goal of the second set of experiments is to determine
the language model which maximizes the recognition per-
formance. Therefore all language models produced for the
perplexity experiments are used to rescore the recognition
lattices obtained for the 200 sentences of the validation set.
Fig. 6 provides the measured word level accuracies5 of the
corresponding recognition systems.

3The closing the lexicon over the test (validation) set ensures that all
words of the test (validation) set are contained in the task lexicon.

4For the construction of the combined corpus the sentences were taken
from the Brown and the Wellington corpus in an alternating way.

5The word level accuracy is defined as (H − I)/N where N represents
the number of words in the correct solution, H stands for the number of
correctly recognized words and the number of insertions is specified by I .
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Figure 5. Validation set perplexity for differ-
ent bigram (top) and trigram language models
(bottom)

If only the LOB corpus is used for training, rescoring with
the trigram language model achieves a word level accuracy
almost 0.5% higher than rescoring with the baseline bigram
model. In the case where additional sentences are used, tri-
gram model performance is increased by 2% while the in-
crease of the bigram language model is 1% only. The use of
random sentences clearly decreases the performance of the
bigram language model systems. The impact of the random
sentences on the trigram language model systems is unclear.
As can be seen in Fig. 6, the best validation set performance
has been measured for the trigram language model trained
on the sentences from the LOB corpus supplemented by the
first 65,000 sentences of the combined Brown + Wellington
corpus.

4.3 Test Set Results
For the first test set experiment the performance of the base-
line trigram model trained on the tagged LOB corpus only
is compared to the previously used bigram language model
trained on the same data.

The results from this experiment are summarized in Tab. 1.
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Figure 6. Word level accuracies for different
different bigram (top) and trigram language
models (bottom) on the validation set

For each performance measure the corresponding rates of the
baseline bigram and the baseline trigram language model are
compared6.

In a second experiment the configuration of the language
model which showed the best performance on the valida-
tion set is used to produce a corresponding trigram model.
Tab. 1 provides the comparison of the system using the base-
line trigram model (column ’Trigram’) extracted from the
LOB corpus only and the system using the smoothed trigram
language model (column ’S. Trigram’). Except for the in-
crease of the sentence recognition rate from 11% to 12% all
achieved improvements over the baseline system using either
the baseline bigram or the baseline trigram language model
were found to be significant on the 95% level.

The n-best analysis shown in Fig. 7 provides a comparison
of the baseline system integrating the bigram language model
(trained on the LOB corpus only) and the system using the

6The sentence recognition rate measures the percentage of the correctly
recognized sentences and the word recognition rate is defined as H/N .
Please note that no better sentence recognition rates can be expected given
the average length of the sentences (20 words).

Perf. Measure Bigram Trigram S. Trigram
Sen. Rec. Rate 11.0% 12.0% 14.0%
Word Rec. Rate 79.0% 80.3% 81.8%
Word Level Acc. 76.3% 78.2% 79.9%

Table 1. Test set results for the baseline tri-
gram model and the smoothed trigram model
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Figure 7. N -best analysis of the test set sen-
tence recognition rate.

smoothed trigram language model. The figure shows that the
resulting increase of the sentence recognition rate is getting
bigger as more additional ranks are included in the analysis.

5 Conclusions
This paper investigated bigram and trigram language models
in the context of offline handwritten text recognition using
different types and amounts of training texts. Specifically,
the use of random sentences produced by a SCFG to sup-
plement the LOB corpus to train both bigram and trigram
language models has been addressed.

The results of the experiments based on the random sen-
tences generated by the SCFG did not bring any improve-
ments over the baseline system. This finding is in contrast to
the results published in [11] where a similar pseudo-corpus
was successfully used to smooth a bigram grammar in the
context of the Berkeley Restaurant Project. The discrepancy
between these results may be explained by the fact that a
rather small and task-specific SCFG was used for the ex-
periments published in [11]. It can be assumed that such
grammars generate random sentences better aligned with the
recognition task at hand than the large general-purpose tree-
bank grammar used in this paper.

The trigram language models significantly outperformed
the bigram language models used previously. These find-
ings do not correspond to [18] where no improvement of the
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system using a trigram language model over the baseline bi-
gram language model was observed. The following two rea-
sons are believed to explain the different findings. First, the
lines of handwritten text recognized by the system described
in [18] contain roughly 10 words on the average. Since a tri-
gram model starts to be helpful only after the third word only
80% of the words in a text line could benefit from such lan-
guage models. Second, the linguistic resources do not seem
to be as well aligned in [18] as in the experimental setup
chosen for this paper.

The experimental results presented in this paper clearly
indicate that word trigram language models can further im-
prove the recognition performance of a handwritten recogni-
tion system based on word bigram language model. To take
full advantage of the trigram language models we recom-
mend that the recognition results of several lines of handwrit-
ten text should be concatenated and suggest that the training
texts should be well aligned with the test texts represented
by the handwritten material.
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