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Abstract

We present a system that separates text from graphics
strokes in handwritten digital ink. It utilizes not just the
characteristics of the strokes, but also the information pro-
vided by the gaps between the strokes, as well as the tempo-
ral characteristics of the stroke sequence. It is built using
machine learning techniques that infer the internal param-
eters of the system from real digital ink, collected using a
Tablet PC.

1 Introduction

Pen controlled computing devices such as PDAs and the
Tablet PC are becoming increasingly widespread, and the
digital ink captured by such devices offers many potential
advantages compared to traditional pen and paper. How-
ever, in order to realize many of these advantages it is es-
sential for the device to separate the ink strokes so that
text strokes can be sent to a recognition engine, and graph-
ics strokes can be grouped and recognized as higher level
graphical entities. Such analysis is essential even if the ink
is to be displayed to the user in its original form since search
and intelligent editing require a high degree of interpreta-
tion of the ink.

In this paper, we consider the fundamental problem of
classifying strokes of digital ink as either text or non-text
(which we shall refer to as ‘graphics’). An example of a
page of ink is shown in Figure 1. Features extracted from
an individual stroke provide some relevant information re-
garding the identity of the strokes, and can already give
a reasonable separation of the two classes [2]. However,
to achieve improved performance we need to take into ac-
count the context of the stroke [5]. Dealing with spatial
context leads to a two-dimensional problem which can eas-

Figure 1. A screen shot of the purpose built
software used to collect and label data, to-
gether with a page of ink showing the text
strokes (blue) and graphics strokes (green)
resulting from manual labelling.

ily become computationally intensive. Since low level pars-
ing must be performed rapidly, we consider a different ap-
proach which exploits the temporal information associated
with on-line ink, leading to a one-dimensional optimization
problem.

Our approach is based on the use of discriminative ma-
chine learning techniques to infer the class of each stroke
on the page (text or graphics) given the observed ink. By
adopting a probabilistic framework we can fuse evidence
from local stroke-based features with that arising from the
temporal context in a principled manner. Furthermore,
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computing probabilities is significantly more powerful than
making hard classifications [1] since the resulting proba-
bilities can be passed to later stages of processing, thereby
allowing classification to be made in a decision-theoretic
optimal manner in the context of the overall system. In this
paper we shall use this probabilistic output to present our
results in terms of ROC (receiver operating characteristic)
curves which display a range of trade-offs between misclas-
sifying text strokes and misclassifying graphics strokes.

2 The Proposed System

Here we shall discuss three approaches of successively
increasing complexity. We start in Section 2.1 by consid-
ering each stroke in isolation, extracting a set of features
and then training a probabilistic classifier based on a feed-
forward neural network, also known as a multi-layer per-
ceptron or MLP [1]. In Section 2.2 we then augment this
model by including temporal information to capture the cor-
relation between successive class labels. Finally in Sec-
tion 2.3 we further extend the model to also consider infor-
mation extracted from the gaps between successive strokes.

2.1 Independent Stroke Model

The input data for our system consists of sequences
of strokes, separated by gaps. A stroke is a sequence
of points (x-y-coordinates) recorded between a pen-down
event (when pen was put into contact with the screen) and
a pen-up event (when the pen was lifted from the screen).
We will refer to the line between two consecutive points in
stroke as a segment. In addition to the spatial data, each
stroke has a time stamp indicating the pen-down time, and
so we have access to the temporal ordering of the strokes.
Potentially, we could also use the temporal information
within each stroke, but since the temporal interval between
two points may vary between platforms and may also be
affected by system latencies during periods of high system
load, we choose not to use this information. In the exper-
iments descibed in Section 3, we will consider a page of
ink, which may contain anything from just a few strokes to
several hundred.

For each stroke, a total of eleven real-valued features
were extracted. The feature extraction itself consists of sev-
eral steps. After extraction of features available directly
from the stroke data (e.g., stroke arc length), a total least
squares (TLS) model was fitted to the stroke; this is equiv-
alent to applying principal component analysis to the set of
stroke points, and primarily extracts the direction and the
length-width ratio of the stroke. Subsequently, the stroke
was divided into fragments at points corresponding to local
maxima in the stroke curvature and TLS was applied again

to the largest resulting fragment. This procedure resulted in
the following set of features:

1. The stroke arc length, i.e., the sum of the lengths of the
stroke segments.

2. The total absolute curvature, defined as the sum of the
absolute angles between the consecutive segments.

3. The main direction (x- and y-components) of the
stroke, as given by the TLS fit.

4. The eigenvalue (length-width) ratio of the TLS fit of
the stroke.

5. The total number of fragments found in the stroke.

6. The arc length of the largest fragment of the stroke.

7. The total absolute curvature of the largest fragment.

8. The main direction of the largest fragment.

9. The length of the long side of the bounding rectangle
(not axis-aligned) of the largest fragment.

Features 1, 6 and 9 are likely to be affected by the overall
scale of the text or sketches on the page and so we normalize
them on per page basis, by scaling them with the inverse of
the median fragment length. The directional features, 3 and
8, are transformed to the auxiliary features

u = sin(θ), v = cos(θ),

where
θ = 2 arctan (y/|x|) .

This removes symmetries around the origin and ensures that
the two extremes (corresponding to angles −π/2 and π/2)
map to identical feature values. The use of features 6–9 is
motivated by the assumption that if the largest fragment is
indeed large—it may include the entire stroke—and has a
high length-to-width TLS ratio, this is an indicator that the
stroke is a graphics stroke.

We denote the complete feature vector by x. The train-
ing data set then consists of a set of N ordered strokes
with feature vectors xn, where n = 1, . . . , N and class la-
bels tn ∈ {0, 1} where tn = 1 denotes a text stroke and
tn = 0 denotes graphics. For the classification of indepen-
dent strokes we trained multilayer perceptron (MLP) mod-
els [1] using the scaled conjugate gradients optimization al-
gorithm [1, 3]. The output yn = y(xn) of the resulting
model represents the probability of a stroke being text given
the feature vector xn. The probability distribution of tn is
then given by p(tn|xn) = ytn

n (1 − yn)1−tn .
We need to control the model complexity of the MLP,

in order to obtain a model which flexible enough to capture
relevant correlations in the data, yet sufficiently constrained
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enough to avoid over-fitting [1]. We do so by controlling the
number of hidden units in the MLP, which we determine us-
ing ten-fold cross-validation [6, 1]. The MLP models were
constructed using the Netlab toolbox [3].

Typical digital ink data poses the problem that the class
distribution is often strongly biased towards text. In practice
such skewed class distributions can cause complications in
the training of parametric models, resulting in poor perfor-
mance on the under-represented class (graphics in this ap-
plication). We can deal with this problem by adjusting the
objective function used for fitting the model. The normal
objective function for classification is the cross-entropy er-
ror, which in the binary case is defined as

E = −
N∑

n=1

(tn ln yn + (1 − tn) ln(1 − yn)) .

Minimizing this error function corresponds to maximizing
the log likelihood function. We can modify this error func-
tion to give

Ẽ = −
N∑

n=1

(
1
πt

tn ln yn +
1
πg

(1 − tn) ln(1 − yn)
)

, (1)

where πt and πg are the estimated (from the training data) a-
priori probabilities of text and graphics, respectively, in the
stroke population from which the data were drawn. This
scaling corresponds to a balanced data set, and is compen-
sated for when the trained model is used for prediction using
Bayes’ theorem so that

ỹn =
πtyn

πtyn + πg(1 − yn)
,

where ỹn denotes the corrected prediction and represents
the posterior probability that the particular stroke is text in
the context of the real-world imbalanced priors.

2.2 Hidden Markov Model

While the features of individual strokes treated in iso-
lation can give useful separation of text from graphics, we
would expect to achieve much better performance if we take
account of the context for each stroke provided by other ink
on the page. For on-line ink (as opposed to off-line im-
ages) we have both temporal and spatial context. Here we
focus on the use of temporal context since this leads to a
one-dimensional inference problem which can be solved ef-
ficiently using dynamic programming techniques.

The intuition is that the identity of successive strokes
will tend to be correlated, since a user will typically make
several graphics strokes in succession in order to draw a
diagram, or will make multiple text strokes in succession
while writing a line of text. This is described by the transi-
tion probability p(tn|tn−1). Given a training set comprising

tn−1 = 1 tn−1 = 0
tn = 1 0.9530 0.1638
tn = 0 0.0470 0.8362

Table 1. Transition matrix for stroke sequ-
ences, in which the first and second rows de-
note respectively the probability of a stroke
being text (tn = 1) or graphics (tn = 0), given
only the class of the previous stroke (tn−1).

Text

Graphics

p(xn|tn = 1)

p(xn|tn = 0)

p(tn = 0|tn−1 = 1)p(tn = 1|tn−1 = 0)

p(tn = 1|tn−1 = 1)

p(tn = 0|tn−1 = 0)

Figure 2. The uni-partite HMM described in
Section 2.2. The edges of the graph have
been labelled with the corresponding transi-
tion probabilities, given in Table 1. Each of
the states has an associated emission prob-
ability distribution over stroke features, de-
noted p(xn|·).

pages of ink in which each stroke has been labelled as text or
graphics, we find this transition probability simply by mea-
suring the frequencies of text and graphics strokes given the
label of the previous stroke. Results from the training data
set described in Section 3 are shown in Table 1. As can
be seen from this table, there is indeed a strong correlation
between the labels of successive strokes. We also have a
marginal distribution for the first stroke, which for this data
set corresponds to p(t1 = 1) = 0.5467.

We now have two sources of information regarding the
identity of the strokes namely the predictive distribution
p(tn|xn) of the discriminative model as described in Sec-
tion 2.1, and the transition probability p(tn|tn−1). These
have been ‘learned’ separately from a trained data set, and
our goal is now to combine these two sources of proba-
bilistic information in order to arrive at an overall posterior
probability for the class label. Since we are looking at the
conditional probability of a stroke label given only the pre-
vious stroke label, we are implicitly considering a first order
Markov process over the labels, as illustrated in Figure 2.

We can therefore construct a hidden Markov model
(HMM) to represent a whole sequence of strokes, which
corresponds to a particular factorization of the joint distri-
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bution of feature vectors and labels of the form [4]

p(t1, . . . , tN ,x1, . . . ,xN ) =

p(t1)
N∏

n=2

p(tn|tn−1)

[
N∏

n=1

p(xn|tn)

]
. (2)

Once we have constructed the HMM we can find the most
probable sequence of stroke labels by running the Viterbi
algorithm [4] which is a dynamic programming technique
whose cost is linear in the number of strokes. It efficiently
solves the optimization problem

arg max
t1,...,tN

p(t1, . . . , tN ,x1, . . . ,xN ) =

arg max
t1,...,tN

p(t1, . . . , tN |x1, . . . ,xN ) (3)

where the equivalence between the left and right sides of
this equation comes from omitting the factor p(x1, . . . ,xN )
which is independent of the stroke labels t1, . . . , tN .

Note, however, that the HMM requires the conditional
densities p(xn|tn) whereas our discriminative models of
Section 2.1 provide the posterior probability p(tn|xn).
These two conditional distributions are related through
Bayes’ theorem

p(xn|tn) =
p(tn|xn)p(xn)

p(tn)
. (4)

Substituting (4) into (2), and omitting factors which are in-
dependent of the {tn}, we obtain

p(t1, . . . , tN ,x1, . . . ,xN ) ∝

p(t1)
N∏

n=2

p(tn|tn−1)

[
N∏

n=1

p(tn|xn)
p(tn)

]
. (5)

Thus we can make use of the predictions from the MLP
model of Section 2.1 by simply scaling the predictions by
the marginal class probabilities.

Applied this way, the Viterbi algorithm yields the most
likely sequence of states given an observed sequence of
strokes. However, by re-weighting the (improper) emission
probabilities in (5), we can trade-off a better performance
on text for a worse performance on graphics and vice versa,
allowing us to plot the full ROC curves in Section 3.

2.3 Bi-partite HMM

Stroke sequences from pen controlled devices also con-
tain a further source of information, in a perhaps less ob-
vious form, namely the gaps between the strokes. For ex-
ample, we might expect that the gap between two consec-
utive text strokes has characteristics different to those of a

gap between a text stroke and a graphics stroke. We now
show how to incorporate gap information by extending the
approach of the previous section.

For the gaps, as for the strokes, we first of all extract a
set of features, z. Note that we typically are not able to
capture the pen position between strokes, and so the raw
information comprises only the coordinates of the pen up
event and the following pen down event, together with the
pen-down times at the start of successive strokes. From this
information we extract a set of 5 features, consisting of:

1. the logarithm of the difference of the pen-down times
for the surrounding strokes,

2. the x- and y-differences of the pen-down locations for
the surrounding strokes and

3. the x- and y-differences of the pen-up location of the
preceding stroke and the pen-down location of the fol-
lowing stroke.

Features 2 and 3 are normalized on per page basis, by scal-
ing them with the inverse of the median fragment length. As
a variant of feature 1, we also tried to use the logarithm of
the difference of the pen-up time of the preceeding stroke
and the pen-down time of the following stroke. However,
this did not yield better performance and since the pen-up
time was only available for some of our data (the Cambridge
data; see Section 3), we decided not to use this variant.

There are potentially four possible labels associated with
the gaps corresponding to the transition text → text, graph-
ics → graphics, text → graphics and graphics → text. We
found that the performance of the system improved if we
grouped these into two classes corresponding to whether the
successive strokes had the same class label (tn = tn+1) or
different labels (tn �= tn+1).

Using the gap features and labels, we trained MLPs fol-
lowing the procedures described in Section 2.1. The result-
ing models were integrated with bi-partite HMM shown in
Figure 3 in the same way the stroke classification models
were integrated with the uni-partite HMM in Section 2.2.

3 Experiments and Results

Data were collected among the employees at Microsoft
Research in Cambridge, using a purpose-written piece of
software, of which a screen shot is shown in Figure 1. Sub-
jects were instructed to use both text and graphics on the
pages they created. The strokes in the data were labelled
by one person (again using the same software) and the la-
belling was checked by another person. In total, 21824
strokes were collected from 41 subjects. The data were di-
vided into a training set (10944 strokes, 19 subjects) and
a test set (10830 strokes, 22 subjects), in such a way that

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004) 
0-7695-2187-8/04 $20.00 © 2004 IEEE 



Text Graphics

T→GT→T G→T G→G

p(tn = 1|tn−1 = 1) p(tn = 0|tn−1 = 0)

p(tn = 1|tn−1 = 0)p(tn = 0|tn−1 = 1)

p(xn|tn = 1) p(xn|tn = 0)

p(zn|tn = tn+1) p(zn|tn = tn+1)p(zn|tn �= tn+1) p(zn|tn �= tn+1)

Figure 3. The the bi-partite HMM described in Section 2.3. Here, the edges that go from the stroke
states (upper row) to the gap states (lower row) have been labelled with the corresponding transition
probabilities, given in Table 1. Since there is only one edge going out of each gap state, these edges
(grey) all have associated transition probability of 1 and have therefore not been labelled. As in
Figure 2, all states have associated emission probabilities, but note that these are shared across
pairs for the gap states.

data from a single subject did not end up in both training
and test set. Additional, independent test data were also ob-
tained from the Tablet PC Ink Parsing Team at Microsoft in
Redmond, USA.

The performance of the independent classifiers and the
uni-partite and bi-partite HMM models were assessed using
the two test sets available. The results for the Cambridge
test set are shown by the ROC-curves in the top left half of
Figure 4 and the confusion matrices in the upper two rows
of Table 2.

The ROC-curves were created by effectively varying the
cost of misclassifying text, while keeping the cost for mis-
classifying graphics constant and positive. If the former
cost is zero, all strokes will be classified as graphics, which
corresponds to the bottom-left corner of the Camridge data
plot (top-right of the Redmond data plot). If, on the other
hand, the cost is sufficiently high, all strokes will instead be
classified as text (top-right and bottom-left corners, respec-
tively). The curve of the ideal model would follow the left
and top (right and bottom) axes. The confusion matrices all
show the true class along the rows and the predicted class
along the columns.

The characteristics of the Redmond data were clearly dif-
ferent to those of the Cambridge data, on which the models
had been trained. Just the fractions of text and graphics
(93.9% and 6.1%, respectively) differed significantly from
those of the training data (77.5% and 22.5%, respectively).
In the light of this, the results shown in the bottom right half
of the plot in Figure 4 and the bottom two rows of Table 2
are encouraging, although the the bi-partite HMM actually
gave poorer results than the uni-partite HMM. The confu-
sion matrices corresponds to the text weightings that gave
the best performance (lowest misclassification rate) on these
data.

Rather than using the Viterbi algorithm for the sequence
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Figure 4. The top left plot shows ROC-curves
for the Cambridge test set, plotted in the co-
ordinates of the top left axes. The line style
indicate the model used, as detailed by the
central legend. The bottom right plot shows
corresponding ROC-curves using the Red-
mond test set, plotted in the coordinates of
the bottom right axes; note that these axes
have there directions reversed relative to the
top left axes.
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Independent Uni-partite HMM Bi-partite HMM
Text Graphics Text Graphics Text Graphics

Text 7857 291 7629 519 7803 345
Graphics 1181 1501 605 2077 577 2105

Text 21421 52 21395 78 21211 262
Graphics 792 592 598 786 489 895

Table 2. Confusion matrices showing the results for the two test sets. The upper pair of rows
correspond to the Cambridge data set whereas the lower pair correspond to the Redmond data. In
each of the six matrices, the rows correspond to the true class and the columns to the predicted
classes of the respective system variant.

classification, we could have picked, for each stroke in the
sequence, the most likely class [4]. We did evaluate this
approach using the Cambridge test data, but it was consis-
tently outperformed by the Viterbi classification.

4 Conclusion and Discussion

We have presented a system for classifying sequences of
digital ink strokes, where the individual strokes are classi-
fied as either text or graphics. The system exploits features
of the gaps between the strokes as well as features of the
strokes themselves, and combines these two sources of in-
formation with a temporal model for stroke sequences. This
temporal model encodes the fact that strokes of one kind
(text or graphics) are more likely to be followed by another
stroke of the same kind rather than a stroke of the opposite
kind. Our experiments demonstrate that the use of temporal
context clearly improves performance compared to classifi-
cation of individual strokes. The results regarding the use of
gap information are less clear, but suggest that this can lead
to better performance, provided the model is trained using
representative training data.

Although we do exploit the temporal information in the
data, our current method can most probably be refined. At
the moment, we ignore the length of temporal gaps and treat
all strokes from one page of ink as a single sequence. It
seems reasonable to assume that after longer temporal gaps,
the last stroke before the gap will offer little guidance on
what the next stroke might be. In this case, it might be ben-
eficial to cut the stroke sequence and run the Viterbi algo-
rithm on the sub-sequences separately. Preliminary results
suggest this is indeed the case.

A related and perhaps important issue is that of copied-
and-pasted ink. If we assume that ink strokes retain their
time stamps when copied and pasted, this means that the
time stamps of such strokes will typically be fairly differ-
ent to those of the target ink document, in which case it
also clearly makes sense to cut the sequence at the resulting

large temporal gap. The same principle applies when exist-
ing ink documents are edited, where added strokes can be
significantly younger than original strokes.

Here we chose to classify the stroke sequences using the
temporal context only. However, one could imagine defer-
ring this decision to a stage where more information gath-
ered, such as spatial context. Provided such a context model
has a probabilistic formulation, integrating it with the cur-
rent system should, at least theoretically, be straightforward.
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