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Abstract 
 

We propose a method derived from an analogy with 
the primate visual system for selecting the best scale at 
which the electronic ink of the handwriting should be 
described. According to this analogy, the method 
computes a multiscale features maps by evaluating the 
curvature along the ink at different levels of resolution 
and arranges them into a pyramidal structure. Then, 
feature values extracted at different scales are combined 
in such a way that values that locally stand out from their 
surrounds are enhanced, while those comparable with 
their neighbours are suppressed. A saliency map is 
eventually obtained by combining those features value 
across all possible scales. Such a map is then used to 
select a representation that is largely invariant with 
respect to the shape variations encountered in 
handwriting. Experiments on two data sets have shown 
that simple algorithms adopting the proposed 
representation lead to very stable stroke segmentation 
and feature matching. 
 
 
1. Introduction 
 

Many studies on handwriting generation have shown 
that complex movements like handwriting can be seen as 
a composition of elementary movements, or strokes, each 
corresponding to an elementary shape [1-3]. According to 
this approach, handwriting generation can be seen as the 
result of a complex motor program that generates the 
appropriate sequence of strokes needed to draw the 
sequence of elementary shapes forming the handwriting. 
Thus, handwriting recognition may be seen as a bottom-
up process that extracts the strokes from the ink, encodes 
their features and eventually performs the classification 
by comparing the description of the specimen with those 
of a set of allographs. 

Studies on visual perception have shown that 

curvature plays a key role in our perception of shape and 
its organization into parts [4, 5]. Therefore, since the 
sixties many efforts have been made to develop 
algorithms for computing the curvature along a line and 
then use this information for both locating curvature 
maxima, in order to extract the elementary parts forming 
the shape, and describing the shape of each part by some 
encoding of its curvature [6].  

The main problem while pursuing this approach is that 
of finding an operative definition of curvature able to 
cope with the large variability exhibited by handwriting. 
Such variability emerges from four main factors: posture, 
neuro-biomechanical noise, style and sequencing. Posture 
refers to changes in size, position, orientation and slant of 
the handwriting that mainly depends on the postural 
condition of the writer. Neuro-biomechanical factors 
greatly affect the quality of handwriting by modifying 
both the motor control program and the production of 
individual strokes. As a matter of fact, fluency in 
handwriting emerges from the time superimposition of 
strokes due to anticipatory effects, so that the actual 
trajectory for drawing a stroke, and therefore its shape, 
depends on both the previous and the successive ones [3]. 
Style refers to the various models that are associated to a 
single character by different writers. Finally, sequencing 
refers to the variation in the order of individual strokes 
during handwriting. The overall results is that 
handwriting meant to encode the same word, produced by 
the same writer at different times or by different writers, 
may correspond to rather different set of digital lines. As 
a consequence, applying the mathematical definition of 
curvature to those lines may result in detecting curvature 
maxima not corresponding to perceptually relevant 
points, eventually providing different descriptions for 
similar shapes. Overall, the classifier has to deal with one 
more source of variability in addition to those naturally 
embodied by handwriting. 

To solve this problem, the large majority of the 
algorithms adopt some kind of technique to filter out “non 
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relevant” changes of curvature. This is generally achieved 
by some thresholding technique, according to which 
curvature changes whose value is larger then the 
threshold are retained as perceptually relevant, while the 
remaining one are discarded. Thus, setting the value for 
the threshold represents the major challenge for those 
methods, and seems to be the main reason of the erratic 
behaviour they sometimes exhibit. To overcome this 
drawback, it has been suggested that effective shape 
representations can be achieved by a multiresolution 
approach, computed along a fine-to-coarse scale. Those 
parametric representations consider features over a 
continuum of scales simultaneously rather than at an 
individual, predefined scale. Independently of the actual 
method to compute the intermediate representations, 
scale-space exhibits many interesting properties, mainly 
hierarchical decomposition in a perceptually satisfying 
manner, and therefore seems very promising. 
Nonetheless, even when this approach is adopted, the 
problem of selecting the appropriate scale, i.e. the setting 
of the value for the scale parameter, still remain an open 
issue.  

We propose to address the problem of selecting the 
best scale at which the electronic ink of the handwriting 
should be described by exploiting the concept of saliency 
introduced for modelling visual attention shift in primate 
visual system [7]. According to this model, multiscale 
features maps are computed at different levels of 
resolution and arranged into a pyramidal structure. Then, 
feature values extracted at different scales are combined 
in such a way that values that locally stand out from their 
surrounds are enhanced, while those comparable with 
their neighbours are suppressed. The saliency map is 
eventually obtained by combining those features value 
across all possible scales. Such a map enjoys the property 
of exhibiting higher values in correspondence of region 
of the scene whose features stands out from their 
surroundings on a larger number of scales. In other 
words, it encodes for local conspicuity over the entire 
visual scene. Following this approach, the problem of 
selecting the most suitable representation can be 
reformulated as an early, preattentive scene analysis 
problem. The scene the system is looking at is the 
electronic ink, and the features we extract from the ink, of 
which we want to estimate the saliency at different levels 
of resolution, is its curvature. The best representation, 
thus, is that corresponding to the scale at which the 
observed curvature changes are the closest, according to a 
given metric, to the saliency map. By reformulating the 
scale selection problem as a preattentive scene analysis 
we expect to provide a biologically plausible background 
to decide when a curvature change is “non relevant” and 
therefore should be discarded. Moreover, by analogy with 
the experimental results on preattentive visual tasks, the 

obtained representation should be much more invariant 
with respect to locally prominent but globally non-
significant changes of curvature. 

The remaining of the paper is organized as follows: 
Section 2 describes the adopted curvature scale-space and 
the saliency map obtained from it. Section 3 illustrates the 
selection of the desired representation and the description 
of the underlying handwriting shape in terms of its 
curvature. Preliminary experimental results are reported 
in Section 4 and some concluding remarks are eventually 
left to Section 5. 
 
2. The curvature scale-space 
 

As mentioned in the introduction, the information we 
extract from the ink, of which we want to estimate the 
saliency at different level of resolution, is the curvature. 
To implement this idea, we need to construct 
representations of the ink at different levels of resolution, 
estimate the curvature for each of them, and eventually 
compute the saliency of the curvature. 

In differential calculus, the curvature c at a point p on a 
continuous plane curve Γ  is defined as 

c=lim∆λ->0  ∆α/∆λ 
where λ is the curvilinear abscissa along Γ and ∆α is 

the change in the angles of the tangents to Γ at distance λ 
and λ+∆λ, respectively. When the analytical 
representation of the curve is not available, the above 
limit is difficult to calculate [8]. However, by using a 
small unity interval ∆λ=1 along the curve, c can be 
approximated as c=∆α. This idea can be implemented by 
interpolating the available data points in such a way that 
the distance between successive points is equal to 1.  

In our case, the input provided by the tablet are the 
sequences x(n) and y(n) (n=1..N), representing the 
coordinates of the points in the (x,y) tablet plane 
corresponding to the uniform time sampling of the ink 
produced by the writer. Thus, changes in the writing 
speed, either due to noise or exhibited in correspondence 
of the terminal parts of the strokes or where two 
successive strokes interact, produce changes in the 
density of the points along the line. For this reason, 
before applying our method, we need to preprocess the 
original set of points by adding new points in such a way 
to obtain a 8-connected line in the (x,y) plane. Along such 
a line, the distance between a pixel and each of its 8-
neighbour is assumed to be 1 [9]. In the sequel, we will 
denote by N the number of points provided by the tablet, 
by M the number of points obtained at the end of the 
preprocessing step, by Λ the 8-connected line, and by 
x’(m) and y’(m) (m=1..M) the coordinates on the (x,y) 
plane of the points belonging to Λ. Note that M >> N, 
where the magnitude of the inequality depends on the 
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resolution of the tablet and on the writing speed. The 
interpolation is achieved by connecting any pair of 
successive data points P=(x(n),y(n)) and 
Q=(x(n+1),y(n+1)) along the shortest digital path 
between them. The algorithm for finding the shortest 
digital path between two points finds the digital points by 
incrementing x or y - depending on which variable 
exhibits the largest variation from P to Q - and then 
computing the value for the other variable according to 
the equation of the analog interpolating line. Thus, the 
coordinates of each interpolating point between P and Q 
depend on both the coordinate of P and Q. Moreover, 
since in an 8-connected digital plane the maximum 
distance between two successive points after the 
interpolation is 1, the two signals x’(m) and y’(m) shall 
be much more correlated than the original x(n) and y(n).  

After this preprocessing, the aim of the first step of our 
method is that of performing a spatial frequency analysis 
of Λ in order to obtain a multi-scale representation of the 
original curve. The above mentioned properties of the 
sequences x’(m) and y’(m) allow to perform such an 
analysis separately on the two one-dimensional 
components rather than on the whole two-dimensional 
ink. To this purpose the Discrete Fourier Transforms 
(DFT) X(K) and Y(K) (K=1..M) of the sequences x’(m) 
and y’(m) are computed. At each scale, the desired 
representation of the original curve is obtained by 
applying the Inverse Discrete Fourier Transform (IDFT) 
to the first T elements of the sequences X(K) and Y(K): 
the smaller the value of T, the coarser the approximations 
of Λ. T ranges in [3,N], because 3 is the minimum number 
of points to define a curve and N is the original number of 
points provided by the tablet. At the end of this step we 
obtain different representations Λi (i=1..N-2) of the 
original curve containing a number of points ranging 
from 3 to N. Figure 1 shows the original ink and its 
multiscale representation obtained by applying the above 
mentioned procedure. The second step of our method is 

devoted to estimate the curvature of each representation. 
To this purpose, the arclength representation of each 
representation Λi is computed [10]. This representation is 
a function α(λ) where λ is the curvilinear abscissa of a 
point, and α is the angle of the tangent to the curve at that 
point with respect to the horizontal axis. The length of the 
curve is normalized, so that at each scale λ ranges 
between 0 and 1, and partitioned in N intervals of the 
same size. In this way, independently of the actual length 
of each curve Λi, the arclength representations have the 
same number of points. The T values α(λ) measured on 
the curve are mapped into the corresponding intervals, 
while the remaining N-T ones are obtained by linearly 
interpolating the values measured on Λi they lie in 
between. Thus, the multiscale representation assumes the 
form of a two-dimensional array Α, with N-2 rows (one 
for each scale) and N column (one for each point of the 
finest resolution).  

The third step is devoted to build the feature map. In 
our case, the feature we want to estimate is the curvature 
along the ink. Center-surround operation is implemented 
by finding the local curvature at each scale. Figure 2a)-b) 
depict a word and a graphic rendering of its feature map. 

The last step is aimed at building a saliency map, that in 
our case assumes the form of a one-dimensional array 
reporting the N average values <a(λ)> of the curvature 
detected in the previous step. Figure 2c illustrate the 
saliency map associated to a word. 
 
3. Saliency-based scale selection 
 

As mentioned before, we want to describe the shape of 
each stroke by means of its curvature. Intuitively, we 
would like to select the representation corresponding to 
the lowest resolution at which the less salient - but still 
“relevant” - changes of curvature are still detectable. 

 

 

   
 a) b) 

Figure 1. The multiscale representation of the ink. a) The original ink, containing 28 points. b) The inks at 
the 26 different resolutions. The coarsest reconstruction of the ink, Λ1, appears as made of two 
segments forming an almost right angle, while the finest one, Λ26, is almost indistinguishable from the 
original ink. Note that the shortening of the ink due to truncation becomes apparent only at very 
coarse scales. 
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 a) d)  

 
 b) e)  

 
 c) f)  

Figure 2: The proposed method. a) The original input. b) A graphical rendering of the multiscale 
representation: at each scale, the darkest/brightest points correspond to most salient curvature 
changes. c) The saliency map: peaks correspond to most salient changes of curvature as measured 
across the scales. d) The histogram of the differences between the curvature at each scale and the 
saliency map. It is also shown the best fitting parabola: the selected resolution correspond to the 
vertex of such a parabola. e) The string encoding the change of curvature along the curve at the 
selected resolution: hyphens correspond to segmentation points. f) The obtained segmentation of the 
ink. 

 
Selecting a representation corresponding to a lower 

resolution would be too coarse, and therefore would 
possibly hide some relevant features, while one 
corresponding to a higher resolution would be too fine, 
and therefore too sensitive to non-salient changes in the 
shape. Then, once this representation has been selected, 
the final description of the handwriting shape would be 
given in terms of a set of features extracted from the 
curvature of the ink at the selected resolution. 

The algorithm for selecting the most suitable 
representation exploits the saliency map. In particular, for 
each representation Λi, it computes the distance between 
the vector α(λ) and <α(λ)>, i.e. the difference between the 
curvature observed at that scale and the saliency map. 
According to the model, such difference should be very 
high in correspondence of the lowest resolutions, get 
smaller as far as the resolution approaches the “right” one 
and then increase again as the resolution becomes too 

J-MMNO-CDDEC-MMNO-CDD-NMM- 
ADDC-NMMNP-BBCDE-JKLN-CA- 
NP-CCDDDEE-HLMMMMNO-CDD-
OO-BCDDDE-LLMMMNN-ABCCDF-
KLLL 
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high. Therefore, to select the most suitable representation 
we find the best fit of the distances with a parabola and 
select the scale ν corresponding to the vertex of the 
parabola. Once the scale ν has been selected, the shape of 
the handwriting is described by the direction of 
corresponding curve α(λ), which has been already 
computed in the second step of the algorithm described in 
the previous Section. The actual values of α(λ) are 
quantized into 16 intervals and each interval encoded by 
one of the letter of the subset [A-P] in such a way that the 
letter A corresponds to the first interval (from 0 to 
2π/16),  the letter B to the second one (from 
2π/16 to 2∗2π/16) and so on, counter clockwise. By this 
encoding, then, the shape of the word is described by a 
string of characters that represents the desired set of 
features. Figures 2d shows the histogram of the distances 
along the scale-space and the best fitting parabola, while 
figure 2e reports the string encoding the shape of the 
word. 
 
4. Experimental results 
 

The main purpose of the algorithm described in the 
previous Section, as already noted, is that of finding the 
best compromise between the two conflicting aims of any 
representation: hiding “non relevant” changes, i.e. 
changes that appear in samples belonging to the same 
class and, at the same time, preserving “relevant” 
changes, i.e. those exhibited by samples belonging to 
different classes. Therefore, we have designed a set of 
experiments to show that the features extracted from the 
proposed representation are very stable with respect to 
“non relevant” changes, as to allow simple but very 
performing implementations of many tasks of interest for 
handwriting recognition. In this study, we have 
considered stroke segmentation and feature matching. 
The experiments reported below have been carried out by 
using a set of 1,000 words produced by the same writer, 
provided by the Handwriting Recognition group at IBM 
T.J. Watson Research Center. Each word was manually 
segmented into strokes by three different subjects and 
only those points on which there was agreement among at 
least two experts were retained as actual segmentation 
point. Let us explicitly note that 99.86% of the actual 
segmentation points were agreed upon by all the experts. 

The first experiment was aimed at performing the 
segmentation of the handwriting into strokes. This is 
achieved by parsing the strings encoding the shape of the 
word and locating a segmentation point whenever the 
lexical distance between the labels of two successive 
strokes is larger than 1. Note that the lexical distance 
d(P,A)=d(A,P)=1. The results obtained while processing 
the string in fig. 2e are shown in figure 2f. The figure has 
been obtained by locating on the original curve the arc 

corresponding to a point at the scale ν, and locating the 
segmentation point in correspondence of the extreme of 
the arc that exhibits the sharpest variation with the 
following/preceding arc of the curve. This last variation is 
easily computed by looking at the feature string. In order 
to provide a quantitative evaluation, we have assumed 
that a segmentation point provided by the algorithm was 
correctly located if it was located within the arc of the 
original curve delimited by the location of the experts’ 
points. Under this assumptions, the algorithm correctly 
located 99.23% of the actual segmentation points.  

In the second experiment, the strings encoding the 
shape of the words were compared by means of a string 
matching algorithm that exploits the observation that long 
strokes, typically ascenders and descenders, play an 
important role in driving the recognition process [11]. 
The string matching algorithm uses as input both the 
unsegmented strings S1 and S2, and the segmented ones, 
SS1 and SS2, respectively. It starts by searching for the 
longest common substring (LCS) with a gap of two 
between S1 and S2. The algorithm then assume that there 
is a match among all the strokes of SS1 and SS2 that are 
included, even partially, in LCS. In other words, the 
matching is "extended" at the stroke level. Then, the 
matching strokes are logically removed from both the 
unsegmented and the segmented strings and the algorithm 
search for the next LCS, and so on. The algorithm stops 
when either there are no more matching strokes, or the 
LCS includes only fragments of single strokes. The 
results of the algorithm for feature matching show that the 
algorithm succeed in providing similar description for 
similar shapes, as hypothesized. 

Eventually, to provide quantitative estimation of the 
results, and because the database does not contain many 
instances of the same word, we have collected another 
database made of 240 words produced by 6 different 
writers, collected by using a Wacom PL 100V tablet with 
a cordless stylus and a sampling rate of 100 Hz. Each 
writer was required to drawn 10 times a set of 4 words 
without any specific instruction or model to adhere. Table 
I reports the results obtained on our database. Each entry 
in the table reports, for each word and for each writer, the 
number of words correctly decomposed (according to the 
human expert), and the number of different descriptions 
for that word, computed by assuming that two strings 
were considered as the same if there were at most two 
different symbols for each stroke. This choice for the 
string matching follows from the observation that the 
anticipatory effects mainly influence the beginning and 
the end of the strokes and therefore the first and the last 
symbols of each string. Let us note that the worst 
performance is obtained on the word “nothing” produced 
by the writer #5. The large number of different 
descriptions, however, is due to two different allographs 
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for the letter “g” used by that writer, as well as to two 
different sequences used to draw the bar of the letter “t”. 
The former drawback should be dealt somehow during 
the classification, while an algorithm for overcoming the 
latter has been proposed in [12]. When such a reordering 
algorithm is applied, the number of different descriptions 
depends only on the number of different allographs 
currently used by the writer for the character composing 
the word. 
 
5. Concluding remarks  
 

We have propose a method for selecting the best scale 
at which the electronic ink of the handwriting should be 
considered in the following steps of the recognition 
process. The method has been derived from an analogy 
with the primate visual system. According to this analogy, 
multiscale curvature maps are computed at different 
levels of resolution and arranged into a pyramidal 
structure. The saliency map is eventually obtained by 
averaging those features values across all possible scales. 
Such a map enjoys the property of exhibiting higher 
values in correspondence of region of the ink whose 
curvature stands out from their surroundings on a larger 
number of scales. Following this approach, thus, the best 
representation is that corresponding to the scale at which 
the observed curvature changes are the closest, according 
to a given metric, to the saliency map.  

The experiments conducted till now, despite the 
simplicity of the feature extraction and the string 
matching algorithm, confirm that the proposed method 
provides a representation that leads to very stable and 
consistent results, and therefore seems a promising way to 
represent handwriting in order to extract basic, writer-
specific writing units.  

Further developments will address the problem of using 
such basic writing units to perform the recognition of any 
words that can be produced by means of such writing 
units, thus encompassing the disadvantages of both 
holistic and analytical methods for cursive handwriting 
recognition. As with respect to holistic methods, it should 
be possible to recognize any word composed by means of  
such writing units, not only the ones belonging to a given, 
size limited dictionary. Approaches based on this idea 
have been recently proposed [13], and they will certainly 
benefits from a better feature matching, as the one 
provided by our method. Similarly, analytical methods 
may benefit as well from the segmentation and 
description of the individual strokes provided by our 
method, because those strokes, rather than the individual 
characters of the alphabet, constitute the graphic alphabet 
of a writer, by means of which his handwriting is 
produced. 

Table I. Results on our data base 
 

 #1 #2 #3 #4 #5 #6 
but 10(2) 9(2) 10(1) 10(2) 10(1) 10(1) 
they 10(2) 10(3) 9(3) 9(1) 9(2) 10(2) 
have 10(3) 10(2) 10(2) 10(2) 9(1) 10(2) 

nothing 9(3) 9(2) 9(3) 10(1) 9(4) 9(1) 
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