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Abstract 
 

This paper proposes an efficient method for recovering 
dynamic information from offline single-stroke hand 
drawing images. This method makes use of both the local 
analysis and global smoothness calculation. At first, a 
graph model is built from the skeleton. Then, odd degree 
nodes are resolved in a probability framework to detect 
the double-traced/terminal segments, and even degree 
nodes are analyzed by the Node Traversing Rule (NTR). 
We estimate the probability of two strokes being 
contiguous pair by PCA based angle calculation. Then, 
double-traced lines are identified. Finally, we calculate 
the smoothness for each of the possible paths by 
SLALOM approximation and select the smoothest one. 
Experiments show that our method works successfully on 
cursive hand drawing images. 
 
1. Introduction 
 

Handwriting analysis and recognition have received 
extensive attention in both the academic and production 
fields. Compared with offline handwriting recognition, 
online recognition makes use of dynamic information of a 
pen-tip movement and has shown better recognition 
performance [1]. The object of our research is to recover 
the dynamic handwriting information from offline static 
images. This can be seen to convert two-dimensional 
image to a sequence of one-dimensional vectors of pen-
tip positions along time axis. 
    Researches in this field can be divided into two 
categories: (1) Skeleton based methods, which used 
thinning or medial axis transform algorithms to obtain the 
skeleton and then traced or searched a written order on 
the skeleton representation. Lee and Pan [2] traced the 
skeleton of offline signature by a set of heuristic rules. V. 
Govindaraju and N. Sriharo [7] presented an approach of 
separating handwritten text from interfering strokes based 
on Gestalt's segmentation and grouping principles. Liu, 
Huang and Suen [3] proposed a stroke segmentation 
method for Chinese characters by using polygonal 
approximation and certain rules. Both Jäger [4] and 
Huang, Yasuhara [5] used graph model to represent the 
skeleton and searched a Hamiltonian or an Euler path, 
which minimized certain smoothness cost functions. Kato 

and Yasuhara [6] avoided the combinatorial explosion of 
direct graph searching method and presented a graph-
based approach by following 2-phase analysis to obtain 
labeling information. (2) Raster image based method 
without thinning. Rosenfeld [9] described a stroke 
recovery platform based on local regional and temporal 
clues. Plamondon and Privitera [10] developed a scanning 
method to find the natural course of strokes by calculating 
the curvature of contour.  
    
2. Problem Description and Overview 
 

In this paper, we proposed a hybrid approach to 
recover the natural drawing path (dynamic information) 
from static single-stroke handwritten images. We assume 
that each stroke is traced at most twice by pen-tip and 
there is at most one terminal or double-traced stroke 
connected to a node.  

Our method has the advantages from both the 
efficiency of local node analysis and the robustness of 
global smoothness calculation. At first, we built the graph 
representation from the selection, which is obtained by 
using thinning algorithms. Then the problem is 
transformed to find a path, which covers all the edges in 
graph. Because exhaustive calculations of all the possible 
paths need large computation, we used node analysis 
algorithm to find the contiguous relations of whether 
segments connected to a node belong to the same stroke 
or not. The terminal and double-traced segments of odd 
nodes are detected by probability calculation and the 
contiguous relations of even nodes are obtained by using 
Node Traversing Rule (NTR). Finally, we calculate the 
global smoothness for each of the possible paths found by 
the SLALOM method and select the smoothest one. 

 
3. Build Graph from Skeletons 
 

The objective of this section is to transform the 
skeleton of input image into a geometrical graph 
representation G. Before applying thinning algorithm to 
obtain the skeleton, we use the smoothing method 
proposed in [13] to reduce the peaks and holes in the 
input image. We build graph G mainly based on the 
skeleton. This is because: the skeleton preserves the 
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significant feature of the original pattern and permits a 
simpler structural analysis [11].  
 
3.1 Extraction of Vertexes and Segments 
 

To construct graph G, we need to extract vertexes set 
V and segments (edges) set E from the skeleton. A 
segment represents a part of the stroke in skeleton; while 
a vertex corresponds to a local geometrical configuration, 
where a segment terminates (terminal vertex) or multi 
segments joint (junction vertex). In the skeleton with 1 
pixel width, the terminal vertex can be easily detected as 
it is a black pixel with only one 8-conneted neighbor; 
while the jointing vertex may be a pixel or a cluster of 
pixels; we call pixels belonging to a vertex as feature 
pixels. The configurations of feature pixels depend on the 
distortions caused by thinning procedure and on the local 
structure where segments meet. By following [8], we 
defined the set of feature pixels as: 
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After extracting feature pixels, we cluster adjacent 

feature pixels into vertexes, and then the non-feature 
pixels left are connected into line segments respectively.  
 
3.2 Identification of Spurious Segments  
 

The skeleton resulted from thinning process may 
include unwanted spurious outputs. The thinning 
procedures iteratively delete unnecessary contour pixels 
without altering the topology until 1-pixel width skeleton 
remains. The deletion or retention of a black pixel 
depends on the local configuration. Thinning procedures 
work well on the stroke area with good contours. But in 
area with noise or of the strokes’ jointing, where contours 
are eroded or overlapped, the skeleton may be distorted 
and include artifact [11]. Hence the segments detected 
above can be classified into two types: real segment (r-
segment) and spurious segment (s-segment). An r-
segment corresponds to a part of real stroke; and s-
segments are resulted from the thinning process and never 
exist in an original handwritten image. They are usually 
in the stroke jointing area. These undesirable s-segments 
will distort the structure of the original pattern. Therefore, 
it is necessary to differentiate these s-segments from the 
r-segments. We use a double threshold method. Details 
are as follows: 

1) Estimate average stroke width w by w=2S/L, where 
S is the area of strokes (the number of stroke pixels) and 
L is the total length contour of input image. 

2) Set two thresholds lth1= k1×w and lth2= k2×w, here lth1 
is large enough so that the segment longer than lth1 must 
be r-segments; while lth2 is small enough so that the 
segment shorter than lth2 must be s-segments. In 
experiments, we chose k1 = 4 and k2 = 1.5. 

3) For the segment with length between lth1 and lth2, we 
examine it in the original image. We calculate the shortest 
distance Dis(pi, C) to the contour C for each pixel pi in 
the segment. If ∑ <

i i wNCpDis 65.0/),(  and 

max{Dis(pi, C)} <w, this segment should be a r-segment; 
otherwise, we label this segment as a spurious one. 

After all the s-segments are identified, we can cluster 
connected s-segments with associated vertexes into a 
node. In this paper, we use vertex for skeleton and node 
for graph G. The terminal vertexes and individual 
crossing vertexes in the skeleton are transformed into 
nodes in G too; real segments are preserved as edges of G.  
 
4. Node Analysis 
 

By constructing graph G, the recovery problem of 
single stroke image can be reduced to a Traveling 
Salesman Problem (TSP), which tries to find the 
minimum cost path in G [4]. It is well known that TSP is 
NP hard and exhaustive search of all the possible paths 
may lead to huge computations in the final global 
optimization step. In order to reduce the computational 
complexity, it is necessary to analyze the contiguous 
relations among the segments connected to the same node. 
The contiguous relations can be represented by the 
information of whether or not two segments connected to 
a node belong to the same stroke; if so, we call that these 
two segments form a contiguous pair. 
 
4.1 Estimation of the Probability of Two 
Segments Being a Contiguous Pair 
 

Human normally writes characters in the smooth way, 
as it costs usually the least energy. Curvature, which 
measures the degree of the curve bending at certain 
position, has been proved effective for estimating the 
smoothness of the curve. Mathematically, curvature of a 
two-dimensional curve is defined as: syxk ∂∂= /),( ϕ , 
where φ is the tangent angle and s denotes length along 
the line of travel. 

In our problem, the objective is to determine the good 
continuity of the two segments, not the local curvature 
itself at certain point of the curve. These two segments 
are separated by the ambiguous node area (Fig. 1), and 
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the skeletons near and inside nodes (s-segments) may be 
distorted and not reliable when estimating curvature.  

 
(a)                                      (b) 

Figure 1.   Examine contiguous pair segments 
 

Suppose we have two segments Ei and Ej jointed at a 
node as shown in Fig. 1. pi and pj represent the two pixels 
of Ei and Ej connected to the node area; angle αi and αj 
denote the tangent directions at pi and pj of Ei and Ej, 
respectively. Si and Sj denote a set of pixels near the node 
in the original stroke area, associated with Ei and Ej 
respectively. Because of the sensitivities of thinning 
algorithm to noise, we estimate angle α from the stroke 
part S near p (the gray regions in Fig. 1 (a)). Details are as 
follows: 

At first, we trace L from p with length 2w along E; 
then we obtain the associated stroke part S of L in the 
original image by the following method: for each black 
pixel pk in the original image, we define its nearest pixel 
Nm(Pk) in skeleton as: 

}|),({minarg)( SkeletonpppDispN ssk
p

km
s

∈= , 

where Dis(pk, ps) is the Euclidean distance between two 
pixels pk and ps. So the associated stroke area S can be 
represented by:  

})(|{ LpNpS kmk ∈= . 
Then we apply Principal Component Analysis (PCA) 

to the coordinates of the black pixels in S. It is well 
known that the first principal vector of PCA corresponds 
to the maximum-variance direction and can be the best 
linear summary of these pixels [12]. Hence angle α can be 
obtained as the direction of the first vector. Then we 
calculate the tangent direction: αi and αj respectively. β  
represents the direction angle from pi to pj. 

The curvature we wanted to estimate is not a local 
curvature on a point but the connecting curvature whether 
or not these two segments are drawn contiguously by the 
same stroke. In this paper, we simply used angle 
difference to represent the curvature k: 

|||||| βαβαπ −+−−= jik  

The larger the curvature k is, the less likely Ei and Ej 
are contiguous pair. We define the probability of Ei and Ej 
being a contiguous pair as: . It is easy 

to see that . We use MLE 

(Maximum likelihood estimation) algorithm to estimate m 
optimally based on a large number of curvature samples 
including both contiguous and dis-contiguous pairs of 
segments. The advantages of using probabilities are: 1) 
There is no need to apply any threshold in order to 
differentiate a contiguous pair from a dis-contiguous one. 
2) By preserving the top multiple cases from the highest 
probability, it is possible to preserve more than one 
candidate for the global smoothness search. 

mk
jictg eEEP −=),(
),(),( ijctgjictg EEPEEP =

Sjpj
C pi

 
4.2 Classification of Nodes and Segments 
 

There are three possible connection relations for a 
segment E connected to node N:  

1) Terminal type (Fig. 2 (a,b,e)): E terminates or comes 
and returns back at N; in other words, among all the other 
segments connected to N, there is no contiguous segment 
of E and we call this segment as a T-leg segment of N. If 
the degree of N is 3, the other two segments are regarded 
as T-hand segments (Fig. 2 (a,e)); if E is the only segment 
connected to N, we call N an F-node (Fig. 2 (b)) ;  

2) Pair type (Fig. 2 (a, c, e)): E has one and only one 
contiguous pair segments at N. 

3) Double-traced type (Fig. 2 (d, e, f)): E has two 
contiguous pair segments at N; hence E must be double-
traced. N is a Y-node. If N is of degree 3, E is Y-leg 
segment and two other segments are Y-hand segments. 

 

Figure 2.   Examples of node types 

 
4.3 Identification of Leg Segment connected to 
Odd Degree Node 
 
  Among the segments connected to an odd degree node, 
there must exist a segment, which is either double-traced 
or terminates. Following the definition in 4.2, this 
segment is a T/Y-leg segment. It is necessary to find out 
this leg segment before examining the contiguous 
relations among others. 

At first, we consider the simplest and most popular 
case: the nodes of degree 3. Suppose that three segments 
connected to node N are E1, E2, E3. If E1 is a terminal 
segment, then E2 and E3 must be contiguous pair and the 
probability of this case can be calculated by: 

)),(1))(,(1)(,( 1312321 EEPEEPEEPP ctgctgctgT −−= . 

If E1 is a double-traced segment, the probability can 
be calculated by: 

N
S 

E 

(a)     (b)       (c)               (d)               (e)       (f)
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),(),()),(1( 1312321 EEPEEPEEPP ctgctgctgY −= . 

By flowing the same way, we can obtain the 
probability of E2 being terminal segment (P2T) or double-
traced segment (P2Y) and E3 being terminal segment (P3T) 
or double-traced segment (P3Y). For all the 6 cases of 
connection relations, we take one case with the highest 
probability or the top two cases if their probabilities are 
near:  

},,,,,max{ 332211 YTYTYT PPPPPP . 
For an odd node connected by 2k+1 segments: E1, 

E2,..,E2k+1, generally the problem of detecting leg segment 
would be very complex if we take all the possible 
connection relations into consideration. For simplification, 
at first we define the Y/T probability for each segment 
being Y/T leg and then examine the leg segment from this 
Y/T probability. For a segment Ei, if it is a double-traced 
segment, the two associated hand segments can be 
detected by: 
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Then for each segment Ei, we define its Y probability 
as: . )),(1)(,(),( Y

ir
Y
ilctg

Y
irictg

Y
ilictgiY EEPEEPEEPP −=

If E is a T-leg segment, we define its T probability 
as:  )),(1( iiTctgiT EEPP −=

]}12,1[,|),({maxarg +∈≠= kkkiEEPE ikctg
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Next, we find the best candidate Y-leg as Em: 
}12,...,2,1|{maxarg +== kiPm iY

i
 

and the best candidate T-leg probability as En: 
}12,...,2,1|{maxarg +== kiPn iT

i
. 

It is easy to see that it is meaningless to compare PmY 
and PnT directly. So we keep both T and Y candidate 
types, and resolve them by global analysis at last. If we 
take off all leg and hand segments, the number of 
segments left must be even and can be resolved by the 
method described in the 4.4. 

 
4.4 Node Traversal Rule For Even Degree Node 

 
For an even node with degree 2k, which is created 

where k lines joint, we need to find the contiguous 
relations among these 2k segments: E1,E2,..,E2k. The 
connection relations can be represented by k contiguous 
pairs denoted as {E11, E12}, {E21, E22},.., {Ek1, Ek2}. It is 
easy to see that the number of possible connection 
relations are M=2k(2k-2) (2k-4)..2. If we use probability 
to obtain the connection relations, there will be two 
problems: 1) If k is big, the number M will be very large; 
2) It is not reliable to multiply a large number of 

probability values as noise can be enlarged during 
multiplication. For this reason, we will provide the Node 
Traversing Rule, which efficiently solves this problem. 

 

(a) Crossing                         (b) Touching       

Figure 3 Configuration of two lines jointing 
(Segments with same end shape belong to the 

same stroke) 
 
Before the detailed discussion, we classify a pair of 

lines, which traverse through a node, into two types: 1) 
crossing, each line passes through the other (Fig. 3 a); 2) 
touching, the two lines joint without crossing each other 
(Fig. 3 b). Kato et al. [6] introduced the Basic Tracing 
Algorithm (BTA) to selecting the middle path as 
contiguous pair segment in a node of degree 4. And the 
following Crossing Node Traversing Rule (CNTR) can be 
seen as a generalization of BTA. 

 

l2s l1 l2 lk

lk+1node 

l(k+s+1)

l(k+s)

Figure 4 Crossing Node Traversing Rule 
 

For a 2s-degree node through which s lines traverse, 
each two lines cross exactly once inside it. We label these 
2s segments clockwise as shown in Fig. 4. For these 
crossing type nodes, we have the following Crossing 
Node Traversing Rule: 

 Take arbitrary one of the 2s r-segments as an 
incoming one to a node, the corresponding outgoing one 
from the node is determined uniquely as the s-th segment 
from the incoming one in counting either clockwise or 
counter-clockwise. In other words, segments E(k+s)%2s and 
Ek form a contiguous pair. 

For a node satisfying CNTR, we can prove the 
following theorem. 
  Theorem 1: The node holds CNTR if and only if all the s 

lines traversing through it cross exactly once 
each other. 

CNTR stems essentially from the good continuity 
criterion that human normally write in the smoothest way. 
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In CNTR, to find the tracing relations, we need only to 
label the index of these segments clockwise. The next 
question is whether CNTR is true for all nodes or not. In 
the ideal situation: if s straight lines joint in a node, then 
two lines must cross each other once and only once and 
CNTR is true. In the real situations, however, it is 
difficult to know whether or not the lines are perfectly 
straight; in other words, it is possible that two lines touch 
inside the node. Thus CNTR should be extended for not 
only crossing junction but also touching junction. Thus 
we introduce the Node Traversing Rule (NTR) in more 
general sense:  

Among all the s lines traversing a node, there is at 
most one touching pair of lines. 

Under NTR, there are only s+1 possible cases (s 
touching cases and one crossing case) of connection 
relations. It is easy to see that this number is much less 
than M. And we can calculate the probability for each of 
the s+1 cases and keep acceptable ones as candidates.  

 
5. Merge/Separate Operator 

 
For both odd and even nodes, there may be more than 

one interpretation of the segments’ connection relations 
for each of the nodes. Before using global calculation to 
select the smoothest path, it is necessary to decide the 
possible orders of these segments in G for all 
combinations of candidate relations. In spite of using 
tracing methods like many approaches before [2], [6], we 
employ the merge/separate operators: merge operators 
iteratively combine the two pair-segments into one 
segment, and separate operator separate terminal segment 
from a node.  

For a T-type segment Et at node N, we use a separator 
operator: add a new node M to graph G and replace Et’s 
end node N with new node M. For pair segments Ei, Ej at 
N, we combine these two segments into a new segment 
and replace Ei and Ej with this new segment in G (merge 
operator). There is a problem: node N, which connects Ei 
with Ej, may be a sub-graph. For this kind of node, we 
find the shortest path between Vi (end vertex of Ei) and 
Vj(end vertex of Ej) inside N by the Dijskra algorithm. 
After applying merge/separate operators on all T/P type 
segments, there are only Y-nodes and F-nodes left in G. 

Double tracing is common in human writing. A double-
traced line (D-line) may exist 1) between two Y-nodes 
(Y-Y pair, Fig. 2 f), or 2) between a Y-node and an F/T-
node, where the segment arrives at a F/T-node and then 
return (Y-T pair, Fig. 2 e). A D-line may be divided into 
multiple segments by other strokes. Hence we use leg 
trace algorithm to find the whole trace line, which starts 
from the leg-segment of a Y-node and traces along the 
smooth path, until it reaches to another Y-node through 
leg segment, or reaches to F-node. Then segments along 

the path between start and end node are merged into one 
segment. If this segment is between Y-T pair, we clone 
this segment in graph G, and then merge two hand-
segments of Y-node, this segment and its clone into one 
segment; else if this double segment is between Y-Y pair, 
there are two possible connection relations among all the 
four hands of two Y-nodes. (For example, assume the two 
Y-nodes are NY1 and NY2, the double-traced line is L, the 
two hand segments connected to NY1 are HL1, HR1, and 
hands with NY2 are HL2, HR2; the two possible connection 
relations are: 1.{( HL1, L, HL2), ( HR1, L, HR2)}; 2{( HL1, L, 
HR2), ( HR1, L, HL2)}). After all of the Y-nodes are 
resolved by this processing, the order of the segments will 
be clear. The start node is selected as the most left-top 
one. 

 
6. Calculate Global Smoothness by SLALOM 
 
  In section 4 and 5, we keep all possible contiguous 
relations as candidate cases. This may result in multiple 
tracing paths. To select the best one among all the single 
stroke paths, we used SLALOM approximation to 
estimate the global smoothness. The reason of using 
SLALOM is that skeleton resulted from the thinning 
process include too much noise. If we calculate the 
smoothness from skeleton itself, noise may influence the 
results too much. SLALOM was developed originally for 
inverse-quantization of digital signals; Huang and 
Yasuhara [5] used it first to calculate the smoothness of 
hand drawing curves. 

For a curve denoted by f(u), we introduce another 
curve g(u) with a monotonously increasing index u. We 
obtain g(u) by minimizing the sum of smoothness and  the 
distance from g(u) to f(u) (error) along the 2D curve: 

∫∫ −+= duufugduug
dx
dgJ 22

2

2

))()(())(()( α  

where α is a coefficient.  
For realization, we rewrite function J(g) into two 

functions Jx(gx) and Jy(gy) for x and y coordinates 
respectively:  

∑∑ −+++−−=
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Then, we calculate the smooth functions gx(i) and gy(i) 
that minimize Jx[gx] and Jy[gy], respectively. This can be 
accomplished by solving linear equations. Based on the 
minimum value J*x and J*y obtained above, we define the 
global smoothness of a stroke path as: S=-(Jx+ Jy) and use 
S as the good continuity criterion to evaluate the single 
stroke paths obtained and choose the smoothest one. 
SLALOM smoothness calculation is the most time 
consuming computation in our system. To improve 
processing speed, we do sampling on pixels along the 
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path and thus reduce the number of pixels solved by 
SLALOM. 
 
7. Experiments 

 
To examine the utility, we applied our method on a set 

of hand drawn scripts, which included words, letters and 
some artificial shapes. The experimental images include 
most possible combinations of touching/crossing nodes 
and double-traced lines. Some examples are show in Fig. 
6. The written order is shown by arrows in the image. We 
can see that this method provides correct results for the 
single double-traced segments (Fig. 6 (a, b)), the multiple 
double-traced segments (Fig. 6 (d)), the odd nodes 
combination (Fig. 6 (c)), the 6-degree node (Fig. 6 (b)), 
the terminal segments (Fig. 6 (b)).  

 
Figure 6 Experiment Results 

 

8. Conclusions 
 

   In this paper, we propose a novel method for 
recovering the written order from static single stroke 
handwritten images. This method consists of two steps: 1) 
Local step: for odd nodes, we examine the double-traced 
/terminal segment in a probability framework. To 
estimate the probability of contiguous pair, a PCA based 
angle method was proposed. And for even nodes, we 
employ the Node Traversing Rule to identify the 
segments’ contiguous relations. 2) Global step: we use 
merge/separate operators to recover the stroke order and 
finally apply SLALOM approximation to estimate the 
global smoothness for each possible path and select the 
smoothest one. 

When compared with the results in [2], [3], [6], [7], our 
method is more efficient to deal with even nodes of 
degree more 4 by introducing NTR. Moreover, the 
identification of double-traced/terminal segment based on 
probability is more robust than that based on threshold [2], 
[3] and tracing method used in [6] where only nodes of 
degree 3 can be resolved. And when compared with the 

graph search method in [4], [5], our method can achieve 
the smoothness optimization with less computational cost. 
For further study, we consider the following questions: 1) 
Extend this method to multiple-stroke scripts; 2) Estimate 
the contiguous probability without angle calculation as far 
as possible, in order to be more insensitive to noise. 
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