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Abstract 
 

We present a 3-D input medium based on inertial 
sensors for on-line character recognition and an 
ensemble classification scheme for the recognition task. 
The system allows user to write a character in the air as 
a gesture, with a sensor-embedded device held in hand. 
The kinds of sensors used are 3-axis accelerometer and 
3-axis gyroscope generating acceleration and angular 
velocity signals respectively. For character recognition, 
we used the technique of FDA (Fisher Discriminant 
Analysis). We tried different combinations of sensor 
signals to test the recognition performance. It is also 
possible to estimate a 2-D handwriting trajectory from 
the sensor signals. The best recognition rate of 93.23%, 
in case we use only raw sensor signals, was attained 
when all 6 sensor signals were combined. The 
recognition rate of 92.22% was reached if the estimated 
trajectory was used as input. Finally we tested the 
ensemble method and the generalization rate of 95.04% 
was attained on the ensemble recognizer consisting of 3 
FDA recognizers based on acceleration-only, angular-
velocity-only and handwriting trajectory respectively. 

Keywords: Gesture recognition, on-line character 
recognition, inertial sensors, accelerometer, gyroscope, 
trajectory estimation, ensemble fusion method, Fisher 
discriminant analysis. 
 
1. Introduction 
 

Since the beginning of on-line handwriting 
recognition field, the category of tablet digitizer devices 
has been the de facto standard medium of input [8]. A 
tablet digitizer consists of an electronic pen and a 
pressure or electrostatic-sensitive surface on which a user 
forms one’s handwriting. Tracking and sampling the 
movement of the pen-tip, a digitizer is able to register the 
information about the user’s handwriting. The most 
important is the representation of the handwriting 

trajectory in the form of a sequence of x and y coordinate-
pairs. Essential among other information include the 
pen-down and pen-up signals. Pen-down signal is 
generated when the electronic pen touches the digitizing 
surface and pen-signal when the user lifts the pen from 
the surface. The two signals are necessary to define a 
stroke in on-line handwriting, which is a sequence of 
points sampled from the pen-down signal to the pen-up 
signal. With the definition of an on-line stroke, a word is 
a sequence of strokes and any handwriting is a sequence 
of words in on-line handwriting. 

The analogy between the tablet digitizer and the time-
honored pen and paper is a merit of the former because 
users are familiar with the latter, yet can be indicative of 
the technology’s vulnerability to the similar kind of 
limitations of pen and paper. Most prominently, the 
digitizer is tied down on a 2-dimensional writing area of 
limited size. In general, on-line handwriting needs to be 
significantly larger than a conventional handwriting on 
paper for reliable recognition, but the area of a digitizer 
tablet is not much larger than a sheet of paper in most 
cases. The size of the digitizer surface needs to get even 
smaller, because of the mobility requirement, in mobile 
or ubiquitous computing environments where the on-line 
handwriting recognition technology may argue for 
competitiveness over the keyboard that dominates 
inputting nearly unchallenged on the desktop. Writing a 
letter or word on the tiny display of a typical PDA, for 
example, is neither easy nor likable to many users. It 
would be clearly desirable in such situations if the 
medium of on-line handwriting input is not limited to the 
confines of a 2-dimensonal area, and this paper addresses 
one such possibility using the inertial sensors, namely 
accelerometer and gyroscope, for transducing the input. 
That way the user forms one’s writing in the air as 
gesture with the input device embedding the sensors held 
in hand. The inertial sensors detect the user’s hand 
motion in terms of acceleration and angular velocity 
signals that can be used directly or be transformed to 2-
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dimensional handwriting trajectory for the gesture 
recognition. For recognition, various different 
combinations of sensor and trajectory information have 
been tested using a recognizer based on FDA (Fisher 
Discriminant Analysis). Also we have tested an ensemble 
of FDA recognizers based on different information and 
have come to verify that ensemble approach improves the 
accuracy of classification. 

In the rest of the paper, we will first describe the 
inertial sensors: their characteristics, issues and the 
trajectory estimation. Next we will present the FDA 
based recognizer and an ensemble of FDA recognizers 
trained on different sources of information, followed by 
the description of the experiments and the performance 
results. 
 
2. Inertial Sensors, Their Signals and 
Characteristics 
 

In our lab, we have developed a proprietary test-bed 
device embedding a suite of inertial sensors, a processor, 
memory, and an infra-red communication port, in the 
form factor of a small hand-held wand (Fig. 1). The 
motivation was to let its user make a gesture in the air 
with the wand, drawing the shape of a symbol from a 
pre-defined alphabet. The wand comes with a button and 
the user presses it to start making a gesture. So the 
button-press is equivalent to the pen-down signal of a 
traditional digitizer. With the button kept pressed, the 
user makes a gesture and upon finishing releases the 
button, the release having the effect of a pen-up signal. 
The system activates the wand’s sensor chips or IMUs 
(Inertial Measurement Units) at the button-press and 
retrieves the measurements at each sampling time. 
 

 
 
Fig. 1: A wand-like input device embedding inertial 
sensors 

 
Upon user’s finishing the gesture, the embedded CPU 

processes the sensor signals collected during the gesture 
input, performs the recognition, and sends wirelessly (via 
the infra-red port) the control command corresponding to 
the recognized symbol to an appliance nearby like a 
computer, TV, audio-player, room lighting system, etc. 
So it is a kind of self-contained universal remote 

controller, and can also serve as a stand-alone 3D pen-
like character input system.  

The inertial sensors we use come in two categories. 
One is the accelerometer measuring the translational 
movement of the hand (assuming the user holds the wand 
in hand) and the other the gyroscope measuring the rate 
of angular change of the hand’s rotation. For 3-D 
measurement, each kind of sensor needs 3 components 
each representing the x, y, and z axes. So we have 6 
different sensor signals and at each sampling time a 
vector of 6 measurement numbers is generated. 

One idiosyncrasy concerning the accelerometer is that 
its measurement always includes the gravity. This leads 
to the need of compensation measure to take into account 
the changes in the gravitational components of the 
acceleration measurements in the axes. Another issue 
concerning the inertial sensors is the problem of drift. 
The fundamental cause of the drift is typically rooted at 
the sensor manufacturing process and there is no known 
general way of eliminating it altogether. The drift value 
can be either positive or negative and the magnitude of 
drift can change gradually over time and also over the 
temperature change in the sensor itself. The actual sensor 
output thus includes a certain amount of drift error and 
without a proper correction the output can be misleading. 

With the availability of only inertial sensor 
information for the purpose of character recognition, we 
naturally face at least two possibilities. One is using the 
sensor signals directly, after some normalization. The 
raw sensor signals may not seem intuitive visually, yet it 
can be verified by experimentation that they carry enough 
discriminative information for the character recognition 
task. A positive aspect of this approach is that using the 
sensor signals is less vulnerable to the distortions 
introduced by further applying imperfect processing steps. 
We will see an example of this shortly when we talk 
about the 2-D trajectory estimation. The other possibility 
is deriving the conventional 2-D trajectory corresponding 
to the gesture made in 3-D space. This process is called 
trajectory estimation. With the restored trajectory 
available, a wealth of conventional feature extraction 
methods of handwriting recognition can be employed. 
The problem is that the estimation process often inserts 
various errors during processing so that the output 
trajectory can be distorted and noisy. Notwithstanding, 
combining the trajectory information in a fusion with 
others can increase the performance as we will see later. 
Now it is clearer to get the rationale of employing an 
ensemble method for our task. That is, we have a set of 
different sources of information none of which alone is 
discriminative or reliable as much as possible, and each 
of which has some to offer that can make up for what the 
others lack. So the situation naturally leads to the 
direction in which an ensemble of different classifiers 
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based on compensative information, work together to 
achieve a higher level of performance than what none of 
the component classifiers can do by itself. We will show 
later that the synergy from the ensemble approach is 
indeed productive. 
 
2.1. Trajectory Estimation 
 

In an ideal condition, the theory of INS (Inertial 
Navigation System) offers the solution to the problem of 
accurately estimating the 3-D trajectory of a moving 
object, assuming the availability of information from 3-
axis accelerometer and 3-axis gyroscope [4]. For more 
background, we need to mention the coordinate systems 
of the body frame (b) and the navigation frame (n) in 3-D 
space (Fig. 2).  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Coordinate systems of INS: the body coordinates 
(b) and the navigation coordinates (n) 

 
The origin of the navigation frame is the starting 

point of the trajectory external to the wand. 
nX , 

nY , and 

nZ  axes are perpendicular to one another, where the 

direction of 
nZ  is parallel to the direction of the gravity 

(g). It does not change even when the wand is in motion. 
The body frame is fixed on the tip of the wand. It is 
aligned with the axes of the IMUs. 

bX , 
bY , and 

bZ  axes 

are perpendicular to each other, where the direction of 
bZ  

axis is aligned with the penetrating axis of the wand’s 
body length. Therefore, it changes according to the 
motion of the wand. 

While the user draws a gesture, the IMUs measure the 
acceleration [ ]T

bzbybxb AAAA =  and angular rate 

[ ]T
bzbybxb ωωωω =  of each axis in the body frame (b). 

Then, using bA  and bω  the acceleration 

[ ]T
nznynxn AAAA =  in the navigation frame (n) is 

calculated by the state-space equation [1, 3] of the wand. 

By integrating nA  twice, we obtain the handwritten 

trajectory [ ]T
nznynxn PPPP =  in the navigation 

coordinate (n). For more details of the INS-based 
derivation of the 3-D coordinates from the above, see [1, 
3].  

In reality, however, the situation is less than ideal 
because the trajectory estimation technique of INS is 
based on double integration of the sensor outputs and the 
drift error of the sensors accumulates and magnifies 
during the integration process. Once 3-D trajectory is 
attained then it is projected onto an imaginary writing 
plane that is optimal in the sense of minimum distortion 
to the original point positions [5]. The projected 2-D 
trajectory is the output of the estimation procedure. There 
have been several algorithms of trajectory estimation [1, 
3, 5] and most of them are based on what is called 
motion detection. To deal with the drift, the main motion 
of the user input needs to be surrounded by a short pause 
at the front and another at the rear. For reliable 
estimation of the trajectory, however, the system needs to 
know the beginning and ending points of the main 
motion. The process of identifying the main motion in 
the input is called motion detection. The quality of 
trajectory estimation can be substantially influenced by 
the accuracy of motion detection which unfortunately is 
an imperfect process yet. 

Our trajectory estimation algorithm in this paper uses 
only 2-axis gyroscope signal information and is based on 
the idea that the movement of the user’s hand holding 
the sensor device is approximately a rotation from the 
joint of the hand’s forearm. With this idea, we calculate 
the quantity for each gyroscope axis that is the 
multiplication of the measured angular velocity with a 
radius that is proportional to the angular velocity. We 
need to integrate the quantity only once over time to get 
to the estimation of the trajectory. This technique is 
simpler than most others yet has the effect of lessening 
the drift error accumulation over time since it involves 
just a single integration. Moreover it does not need the 
motion detection. This point brings more ease and 
convenience to the user because inserting artificial pauses 
demands a non-trivial degree of attention to most users. 
In more detail, let )](),([)( tytxtp =  be the x and y 

coordinates pair to be restored at time t. In theory, 

∫=
t

dvtp
0

)()( ττ . 

Approximately, 

).()(

)](),([)(

trtw

tvtvtv yx

⋅≅
=

 

where w(t) is the angular velocity from the 2-axis 
gyroscope and r(t) the radius of rotation at time t. So, 

Zn 
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Xn 

 

Xb 

Zb 
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Body frame (b) 

Navigation frame (n) 
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∫ ⋅≅
t

drwtp
0

)()()( τττ . 

Ideally, r(t) is a variable, but for our purpose we 
assume it a constant R, and the formulation becomes 

∫

∫

∫

⋅=

⋅≅

⋅≅
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t
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drwtp
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0

0
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3. Character Recognition on Raw Sensor 
Signals by FDA 
 

FDA is one of the linear projection methods that 
project the input point (a vector) in the input space to a 
point in the feature space. One motivation of using a 
linear method was that the training is easier, faster and 
requires relatively smaller amount of data for reasonable 
level of training than the more resource-intensive 
techniques like neural networks or hidden Markov 
models. Therefore it expedites, as a fast-running test-bed, 
one of our purposes, which is to explore the various 
sensor information combinations and see how the 
classifier behaves on each combination. One reason for 
such an exploration was that we wanted to determine the 
best performing combination of sensors. Another reason 
was to identify the most economical alternatives (yet 
performing acceptably) in terms of the number of sensors 
because the less sensors we use, the cheaper. Another 
motivation for linear method was to reinforce the overall 
performance via an ensemble of simple and fast 
classifiers. Yet another motivation was that the approach 
has a potential for making a user-tailored adaptation 
feasible because the training runs fast and demands less 
on the amount of training data. 

The PCA (Principal Component Analysis) is probably 
one of the most widely known linear projection 
techniques [10, 9]. The essence of PCA is the 
construction of the projection matrix that defines the 
linear mapping having a scattering effect in the feature 
space and thus facilitating the separation between the 
classes. One problem with PCA, however, is that it has 
no provision built into the linear projection that can take 
the class-specific regularity into account. The projection 
matrix is constructed with reference to the single global 
mean and the scattering effect in the projection space is 
indiscriminate of the classes. More specifically, the 
projection widens the between-class scatter but also the 
scatter within a class and this is not desirable for 
classification purpose. FDA is a technique that addresses 
the problem by trying to maximize the between-class 

scatter and minimizing the within-class scatter by 
reflecting the class-specific distribution structure into the 
projection. This point was demonstrated by a simple two-
class experiment in [2] where PCA partially mixed up 
the two classes in the projection space while FDA yielded 
a clean-cut separation. FDA was successfully used in [2] 
for improving the performance of a face recognition task 
under extensive variation in lighting conditions and 
facial expressions and in [7] for continuous on-line 
handwriting recognition. 
 
4. Ensemble Fusion, Experiments and Results 
 

For the experiments, we used a dataset collected from 
16 people (5 females and 11 males). There were 13 
character classes: 10 digits and 3 gestures. Each person 
contributed approximately equal amount of data 
distributed equally across the classes and the dataset 
contained a total of 4,945 samples. Each class character 
had a Graffiti-like uni-stroke shape (Fig. 3). 

 
Fig. 3: Character alphabet and corresponding set of 
shapes 

 
Firstly we have tested various different sensor 

information configurations with the dataset to see how 
they behave in terms of the generalization capability. 
70% of the data (from each subject) was used for training 
and 30% for testing. Table 1 shows the result. As 
expected the full 6-axis configuration (3A-3G) was the 
top performer. There are, however, other configurations 
performing near the top. The best 2A-3G and 3A-2G 
configurations took the second and third places 
respectively, followed closely by the best 2A-2G 
configuration (2A (xy)-2G (xy)). In case we are allowed 
only one kind of sensor information, the table hints that 
the full gyro-only configuration (i.e. 3G at rank-9) would 
beat the full accelerometer-only configuration (3A at 
rank-12). If only one-sensor two-axis configurations are 
available, the best 2A configuration (i.e. 2A (xy) at rank-
10) would outperform the best 2G configuration (2G (xy) 
at rank-15). It is also notable that the best 2A (at rank-
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10) was slightly better than the full 3A (at rank-12) but 
the full 3G (at rank-9) outperformed the best 2G (at rank-
15) significantly. These characteristics would help decide 
on a sensor configuration choice in case we have 
practical restrictions on the available sensor information. 

 

 
Table 1: Generalization rates of sensor configurations 

 
 Next we demonstrate one of our earlier point that 

FDA-based recognizer takes smaller amount of training 
data than most other techniques. In the above setup we 
used 70% of the data for training and the rest for testing. 
In the new setup we varied the percentage of the data for 
training from 10% to 90 % in steps of 10% increment. 
For compiling the table, 3A-3G configuration was used 
for data (Table 2). One point to note about our dataset is 
that it may not be completely homogeneous. The data 
were accumulated into the dataset in chronological order. 
The order of the data in the dataset, however, may reflect 
something more than just temporal order of placement. 
For example, each subject contributed about 310 samples 
in one session using a novel input device in a not-so-
familiar manner. So the subject might get used to using 
the device better than it was near the start of the session, 
and he/she might be more influenced by a fatigue 
towards the end. There is also the possibility of the 
sensors’ internal temperature rising across several 
collection sessions and affecting the level of drift 
mentioned earlier. Therefore we used both non-permuted  

 

 
Table 2: Generalization rate of FDA with different 
training set sizes 

and randomly permuted dataset for the tests and the 
result indeed indicates the existence of such effects 
reflected in the data. The table shows that the FDA’s 
generalization rate is robust even with a small training 
set if its representativeness is sustained. 

Data normalization is also important in using inertial 
sensor signals for character recognition since the raw 
signals can be very noisy. We applied two kinds of 
normalizations: Gaussian smoothing and translation 
correction. To see the effect of the normalization we use, 
we did the 70%-for-training generalization test with the 
3A-3G data (Table 3). 

 
Table 3: Effects of data normalization on generalization 
rate 
 

Lastly we talk about the ensemble fusion method and 
the improvements thereof. We computed a set of 4 
different Fisher projection kernels based on the 3-axis 
accelerometer-only dataset (3A), the 3-axis gyroscope-
only dataset (3G), the full suite of sensor signals dataset 
(3A-3G) and the estimated trajectory dataset (TE) 
computed from the 2-axis gyroscope based algorithm 
described earlier. All of them were constructed with 70% 
of non-permuted data. Their individual generalization 
rates on the remaining 30% of the non-permuted data are 
in Table 4. 

 
Table 4: Generalization performances of single- 
information-source recognizers 

 
About the fusion rule, let Vi be a vector of class scores 

(of class-1, class-2, etc. to the last) returned by the i-th 
FDA recognizer. Assume that we have k such FDA 
recognizers and their corresponding output vectors 
V1 ,V2 , … , Vk. Then the fusion rule we used is 

 
),,,Mean(),,,ompMult(C),,,( 212121 kkkF VVVVVVVVV LLL +=  

 
where CompMult(~) is the component-wise 
multiplication of the input vectors and the Mean(~) takes 
the mean of the vectors. Table-5 lists the generalization 
rates of 5 different ensemble recognizers each consisting 
of the fusion rule and a subset of the 4 kernels mentioned 
above.    As    the   table   shows,    all   ensemble   fusion  

Gyro 

Acc 
none xyz xy yz xz 

none n/a 91.15% 88.93% 64.65% 62.24%

xyz 90.61% 93.23% 92.69% 90.68% 92.02%

xy 90.81% 92.76% 92.56% 92.56% 91.82%

yz 70.29% 85.18% 87.32% 84.98% 69.68%

xz 83.97% 89.74% 89.67% 85.04% 91.21%
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90.61% 91.15% 93.23% 92.22% 

with both 
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without 
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without both 

93.23% 85.24% 92.22% 84.10% 
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Table 5: Generalization performances of ensemble 
recognizers 
 
approaches outperformed the best recognizer based on 
single source of  information (i.e. 3A-3G configuration at  
93.23%). Adding the trajectory information (TE)to 3A-
3G configuration, however, did not boost the 
performance significantly over the 3A-3G-only 
information. It is worth noting that an ensemble fusion of 
recognizers each based on different source of information 
performed better than a single recognizer whose input 
was the merger of the same sources. For example the 
ensemble recognizer of 3A and 3G got higher 
generalization rate than the one based on 3A-3G. The 
best performance of 95.04% rate came when we set up 
each recognizer on 3A, 3G and TE respectively and 
merge their outputs in the ensemble fusion. It is beyond 
the scope of this paper to analyze quantitatively and 
generalize the observation but the intuition is that 
specializing each component recognizer for a single kind 
of information and then integrating their behaviors 
synergistically leads to better performance than a best 
single recognizer handling all information 
simultaneously. 
 
5. Conclusion 
 

In this paper we introduced a 3-D input device for on-
line character recognition using inertial sensors and 
presented the viability of freeing the character input from 
the confines of limited 2-D surface. Further 
developments in the direction would lead to a new 
dimension of usability of handwritten input especially in 
mobile or ubiquitous computing environments. In 
trajectory estimation we presented a method that does not 
depend on motion detection, eliminating the need of 
artificial pauses therefore enhancing the user 
convenience. We also tested various different 
combinations of sensor information with the FDA 
technique to see how they affect the recognition 
performance. We conclude that as much diverse sources 
of information as possible lead to the best overall 
performance but also identified the viable alternatives in 
case of facing practical limitations on the available 
sensors. With a set of different sources of information 
none of which alone is discriminative as much as 
possible, we applied the ensemble fusion to the problem 
with the simple and fast classification of FDA. Our FDA-
based fusion method provided an experimental evidence 
that an ensemble of specialized recognizers working 

together outperforms the best recognizer working alone 
on all-in-one information. 
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