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Abstract 
 

This paper presents a gesture input device, Magic Wand, 
with which a user can input gestures in 3-D space. 
Inertial sensors embedded in it generate acceleration and 
angular velocity signals according to a user's hand 
movement. A trajectory estimation algorithm is employed 
to convert them into a trajectory on 2-D plane. The 
recognition algorithm based on Bayesian networks finds 
the gesture model with the maximum likelihood from it. 
The recognition performance of the proposed system is 
quite promising; the writer-independent recognition rate 
was 99.2% on average for the database of 15 writers and 
13 gesture classes. 

Keywords: Gesture input device, Handwriting 
recognition, Bayesian networks, Trajectory estimation, 
Inertial navigation system, Accelerometer, Gyroscope 
 
1. Introduction 

As the ubiquitous computing environment becomes 
widespread these days, the role of computers has changed 
from massive computing devices to assistant devices of 
our daily lives. Accordingly, more natural interaction 
methods beyond tradition keyboards and mouse have been 
studied. Speech recognition [1], vision-based gesture 
recognition [2] and on-line handwriting recognition [3] 
are popular examples. Among them, the online 
handwriting input method, which transcribes human hand 
movements into characters and gestures, has the 
advantage of natural and portable interaction. It is very 
natural because people have been accustomed to using 
pens and papers since childhood. Also a small writing 
surface of a few inches is enough for applying it.  

Conventional on-line handwriting recognition systems 
aim at recognizing trajectories written on 2-D writing 
surfaces. The writing surface is enabled usually by tablet 
types of devices such as opaque tablets, touch pads, tablet 
PCs and web pads. When people write characters and 
gestures by these devices, pen positions on 2-D plane are 
digitized by sensing pressures [4] or electro-magnetic 
signals of tablets [5]. These devices have the advantage of 
high resolution and high sampling rate in digitization. 

However, they have the limitation that people should write 
only on tablets. 

In order to extend the writing area beyond tablets, new 
types of sensors are employed such as optical sensors and 
ultrasonic waves. In the case of optical sensors, a camera 
mounted on the pen tip captures the image around it. Then 
the coordinate of the pen tip is calculated by analyzing 
unique image patterns [6] or comparing changes between 
consecutive input images [7]. In the case of ultrasonic 
waves, a pen emits ultrasonic waves and receivers in 
neighborhood compute distances from it [8]. Due to these 
sensors, writing surfaces are extended to any plat surfaces. 

By employing inertial sensors, the writing area is 
further extended to 3-D space. Inertial sensors measure 
the inertia of objects; accelerometers measure 
accelerations and gyroscopes measure angular velocities. 
They are small enough to be embedded in handheld 
information devices. Moreover, they do not require any 
external reference devices. Therefore, users can input 
gestures in almost any place. This is a big advantage over 
the approach of employing external sensors such as 
ultrasonic receivers/emitters [9] and cameras [10], which 
require fixed installation space. However, they have the 
limitation that trajectories are not measured directly but 
calculated from sensor signals so that robust signal 
processing techniques are necessary. 

This paper presents a gesture input device, Magic 
Wand, that recognizes trajectories of hand movements in 
3-D space. When a user writes gestures in 3-D space with 
the wand, its inertial sensors, 3-axis accelerometers and 3-
axis gyroscopes, convert hand movements into 
acceleration and angular velocity signals. Then, a 
trajectory estimation algorithm converts them into 
trajectories. Finally, a recognition algorithm matches the 
trajectories with Bayesian network-based gesture models. 

 
2. System overview 
2.1 System usage 

In order to show the applicability of a 3-D input device 
in commercial products, we have made a prototype remote 
controller with only one button. Typical remote 
controllers have tens of buttons. Different commands are 
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mapped to different buttons so that users control 
electronic appliances such as TV’s and DVD players by 
pressing buttons. Many customers complain the difficulty 
to find the proper button among so many small buttons. 
However, the proposed system has only one button which 
activates sensor signals. Users control appliances by 
drawing gestures while pressing the activation button. Fig. 
1 shows the picture of the proposed system. It looks 
noticeably simple and slim compared to conventional 
large remote controllers with a lot of buttons. 

The typical scenario of its usage is as follows. When a 
user wants to issue a command, he draws the gesture 
shape corresponding to it while pressing the activation 
button. After the button is released, the gesture shape is 
recognized. Then, proper IR control codes are fetched and 
transmitted to a TV via its IR LED. By using the 
traditional IR codes, conventional TVs are controlled by 
gestures without any modification to them. 

 
Fig. 1: Magic Wand: the proposed gesture input device 
as a form of a remote controller 

 
2.2 Hardware components 

The Magic Wand consists of accelerometers (1 XZ-
axis, and 1 Y-axis chips), gyroscopes (1 X-, 1 Y-, 1  Z-
axis chips), an analog-to-digital converter (ADC), a digital 
signal processor (DSP), a flash memory, an infrared (IR) 
LED, a serial port interface and a lithium-iron battery (Fig. 
2). Accelerometers measure accelerations and gyroscopes 
measure angular velocity. The measured signals are 
converted into digital signals by ADC. DSP runs signal 
processing and recognition algorithms. Flash memory 
stores program codes and data. A serial port interface is 
used for transmitting sensor data to PC when collecting 
data and training gesture recognizers. 
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Fig. 2: Hardware components of Magic Wand 

 
2.3 Software components 

The gesture recognition system has the components of 
a trajectory estimation algorithm and a gesture recognition 
algorithm. The trajectory estimation algorithm gets the 
acceleration and angular velocity signals from sensors, 
and converts them into a hand-movement trajectory. The 
gesture recognition algorithm gets the trajectory and  

 
 
 
 
 
 

 
Fig 3: Software components of Magic Wand 
 
classifies it into one of predefined gesture classes. Fig. 3 
shows the overall software components and data flow.  

We choose to classify trajectories instead of raw 
signals because of two reasons. First, signal variations can 
be greatly reduced in the trajectory domain compared to in 
the raw signal domain. Inertial sensor signals are sensitive 
to the variation of motion status and writers. Even a 
simple trajectory can be made by different ways of 
movements; some people tend to write slowly and other 
fast. Also the posture of the device, how it is oriented in 
the 3-D space, affects sensor signals. In trajectory domain, 
these motion and posture variations are removed. Second, 
in trajectory domain, we can apply traditional on-line 
handwriting recognition algorithms. They have been 
studied for decades so that reliable recognition 
performance is expected, provided that trajectories can be 
stably estimated.  

  
3. Trajectory estimation algorithm 

The trajectory estimation algorithm converts raw 
sensor signals into trajectories in 3-D space and finally 
projects it onto 2-D plane [11-13]. The first step to realize 
the proposed system is to identify physical motion 
properties, i.e., three dimensional position and orientation 
information, which falls into category of motion tracking. 
There are various kinds of motion tracking algorithms 
available and the proposed system utilizes the motion 
tracking method with inertial sensing technologies. 

With three axis acceleration and angular rate 
measurements, the theory of inertial navigation system 
(INS) theoretically guarantees the possibility of 
computing position and orientation information of an 
object moving in the 3-D space [11].  

To apply an INS theory, we defined the coordinate 
system of the body coordinate (b) and the navigation 
coordinate (n) in 3D space, as shown in Fig. 4. The 
navigation coordinate (n) is the stating point of trajectory 
external to the input device. 

nX , 
nY , and 

nZ  axes are 

perpendicular to one another, where the direction of  
nZ is 

parallel to the direction of earth gravity (g). It does not 
change even when the device is in motion. The body 
coordinate (b) is fixed on the device. It is aligned with the 
axes of the inertial sensor chips (IMU: inertial 
measurement unit). 

bX , 
bY , and 

bZ  axes are perpendicular 
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to each other, where the direction of 
bZ  axis is aligned 

with the core axis of the device. Therefore, it is changed 
according to the motion of the device body. 

 
Fig. 4: Coordinate system: the body coordinate (b) 
and the navigation coordinate (n) 

 
While a user is drawing a gesture, the IMU measures 

the acceleration [ ]Tbzbybxb AAAA = and angular rate 

[ ]T
bzbybxb ωωωω = of each axis in the body coordinate 

(b). Then, using bA and bω , the acceleration 

[ ]T
nznynxn AAAA =  in the navigation coordinate (n) is 

calculated by the state-space equation [11] of the device. 
By integrating nA  twice, we obtain the handwritten 

trajectory [ ]T
nznynxn PPPP = in the navigation 

coordinate (n). The governing equations of motion 
tracking used in this paper are expressed as follows: 
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where the subscript n  denotes the navigation 

coordinate, and b  denotes the body coordinate, nV  is the 

rate of change of position, i.e., velocity shown in the 
navigation coordinate, G  is the constant gravity vector 

shown in the navigation coordinate, ),,( bzbybx ωωω  is 

the inertial angular rate vector shown in the body 
coordinate, yaw)pitch,(roll,),,( =ψθφ  are Euler 

angles. Here, the matrix Tb
n

n
b CC =  refers to the direction 

cosine matrix describing the rotation relationship between 
the navigation coordinate and body coordinate and is the 
function of Euler angles as shown in Eq. (2). 

However, the above described algorithm can not be 
directly applied to the proposed system since the INS 
leads to an unbounded growth of error due to many 
integration steps involved. A typical INS uses periodic or 
aperiodic resetting procedure to remove the error growth, 
which is not a feasible solution for the small and low-cost 
systems including the proposed system. Fortunately, the 
solution of this problem has been detailed and solved in 
[12] and is called zero velocity compensation (ZVC). 

After reconstructing 3D motion information, we 
project the recovered 3D trajectory into a 2D writing 
plane by finding the optimal writing plane in the sense of 
minimum distortion to the original point positions [12]. 
The purpose of this process is to reduce the writing plane 
variation of the estimated trajectories. 

 
4. Gesture recognition algorithm 

We apply the on-line handwriting recognizer based on 
Bayesian networks [14-15] for recognizing trajectories 
estimated from inertial sensor signals. The recognizer 
models dependencies between points and basic strokes 
explicitly. It showed favorably comparable recognition 
rates to conventional approaches based on template 
matching method and hidden Markov models in 
recognizing digits and Korean Hangul characters [14-15]. 

 
4.1 Introduction to Bayesian networks 

A Bayesian network is a directed acyclic graph (DAG) 
whose nodes represent random variables and whose arcs 
relationships between them [16]. It efficiently encodes the 
joint probability distribution of a large set of random 
variables. When a Bayesian network S  has N  variables: 

NXXX ,,, 21 L  and )( iXpa denotes the random 

variables from which dependency arcs come to 
iX , the 

joint probability of NXXX ,,, 21 L  is given as follows:  

∏
=

=
N

i
iiN XpaXPXXXP

1
21 ))(|(),,,( L .  (3) 

In this paper, the conditional probability is represented 
by the conditional Gaussian probability [14]. When a 

multivariate random variable X  depends on nXX ,,1 L , 

the conditional probability distribution is given as follows: 
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The mean µ  is determined from the linear weight sum 

of dependant variable values ]1,,,[ 1
T
n

T xxZ L=  as 

follows: 
TWZu = .   (5) 

where W is a kd ×  linear regression matrix, d  and 

k  are the dimension of X and TZ  respectively. 
 

4.2 Gesture model 
A gesture is represented hierarchically by modeling its 

components and relationships among the components [14]. 
In the first level, a gesture model is composed of basic 
stroke models and their relationships. In this paper, a 
basic stroke denotes a nearly straight trace whose global 
direction is different from those of connected traces in 
writing order. In the second level, a basic stroke model is 
composed of point models and their relationships. Finally, 
a point is modeled with 2-D Gaussian distribution for its 
X-Y position. 

A point model is represented by a 2-D Gaussian 
distribution for (x, y) coordinates of its corresponding 
points in 2-D plane. It corresponds to a single node in 
Bayesian networks. 

A basic stroke model is composed of point models and 
their relationships, called as WSRs (within-stroke 
relationships). It is constructed by recursively adding mid 
point models and specifying WSRs. A mid point is the 
point at which the lengths of the left and the right partial 
strokes are equal. A WSR is represented as the 
dependency of a mid point from two end points of a stroke. 
Fig. 5 shows the recursive construction example of a basic 
stroke model. Fig. 5 (a) shows an example of basic stroke 

instances. At the first recursion ( 1=d ), 1IP  is added for 

modeling 1ip 's with the WSR from 0EP  and 1EP  (Fig. 5 

(b)). At 2=d , 2IP  and 3IP  are added for the left and the 

right partial basic strokes (Fig. 5 (c)). This recursion stops 
when the covariances of newly added point models 
become smaller than a predetermined threshold. 

(b) (c)

0EP
1EP

1IP

0EP 1EP

1IP

3IP
2IP

(a)

1ep

0ep
1ip

2ip
3ip

1ep

1ip

2ip 3ip
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Fig. 5: Example of recursive construction of a basic 
stroke model 

 
A gesture model is constructed by concatenating basic 

stroke models according to their writing order and 

specifying inter-stroke relationships (ISRs). ISRs are 
represented by dependencies among basic stroke end 
points. Fig. 6 shows a Bayesian network based gesture 
model with N  strokes and the stroke recursion depth 

2=d . iEP 's are the stroke end point models and 
jiIP ,
's 

are the internal point models of the i -th basic stroke. The 
right end point of the previous basic stroke is shared with 
the left one of the following basic stroke. ISRs are 
represented by the arcs between iEP 's, and WSRs are 

represented by the incoming arcs to 
jiIP ,
's. 

2EP
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0EP
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1−NEP NEP

1,NIP

3,NIP2,NIP
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Fig. 6: Gesture model with N basic strokes and the 
stroke recursion depth of 2 
 
4.3 Matching algorithm 

Each gesture class m  has a corresponding gesture 

model mλ [14]. A gesture input, a trajectory point 

sequence of TOO ,,1 L , is recognized by finding the 

gesture model *λ which produces the highest model 
likelihood as follows: 

)|,,()(maxarg
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The model likelihood is calculated by matching stroke 
internal point models ( IP ’s) and stroke end point models 
( EP ’s) of gesture models (Fig. 6) with the input point 
sequence. Because boundaries of basic strokes are not 
explicitly specified in the input point sequence, all the 
possible basic stroke segmentations should be searched. 
After a gesture input is segmented into basic strokes, basic 
stroke end points are matched to EP ’s. Then each basic 
stroke is recursively resampled into mid points and 
matched to IP ’s. When a gesture model G  with N  

basic stroke models matches the input points TOO ,,1 L , 

and one basic stroke segmentation instance is denoted as 
Tttttt NNi === ,,1   ),,,,( 010 LLγ  and the whole 

set as Γ , the model likelihood is calculated as follows: 
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In Eq. (7), ( ))(,),1(),(),( 111 jjjjj tOtOtOttO L+= −−−  

and kjip ,  represents the k -th recursively sampled point 

of the j -th basic stroke input. The matching probabilities 

of EP ’s can be interpreted as the probabilities of global 
stroke positions and those of IP ’s as the probabilities of 
local stroke shape distortions. 

 
5. Experimetal results 
5.1 Data set 

In order to evaluate the proposed gesture recognition 
system, we collected data from 15 writers. Among them, 
eight writers have some experience of using the device 
and the others do not have any. The input device was 
attached to a PC by using the serial port interface during 
data collection. Sensor signals were generated from the 
input device and transmitted and saved in the PC. Gesture 
labels and representative shapes were shown on PC screen. 
Writers drew gestures while looking at the representative 
shapes. Each writer wrote 13 classes of gestures by 24 
times. They were instructed to hold the device in static 
position for a short time just before and just after writing.  

Gesture shapes are iteratively designed for high 
recognition rates and convenience of writing. At first, we 
adopt gesture shapes from widely used graffiti on PDAs. 
Because of the limited accuracy of trajectory estimation 
algorithm and the lack of visual feedback to writers during 
writing, gestures with similar movement history were 
confused frequently (the gesture pair of 0 and 6, and 5 and 
8). These confusions are resolved by appending a basic 
stroke to the end of the gesture 5 and 6. Fig. 7 shows the 
final gesture shapes1. 

 
 
Fig. 8 shows an example of inertial sensor signals 

obtained when the gesture 2 is written. The first graph 
shows 3-axis acceleration signals and the other graph 
shows 3-axis angular velocity signals. The large signal 
changes from the time 25 to the time 75 suggests that the 

                                                 
1 The shapes shown in this paper are mainly designed for 
testing the recognition performance of the device. We 
have developed another gesture set suitable for TVs. 

gesture was drawn during the interval. The other intervals 
indicate that the device was in a static position. It is 
observed that the acceleration is more sensitive to the 
motion of the device than angular velocity from its larger 
variation. 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Example of raw sensor signals when the 
gesture 2 is written 
 
5.2 Results of trajectory estimation 

Fig. 9 shows trajectories estimated from raw sensor 
signals. Texts on the left-top corner of  trajectories 
represent guesture labels. The shapes look somewhat 
distorted from representative gesture shapes. Artificial 
hooks are observed in start and end parts of trajectories. 
The length ratios between basic strokes are not estimated 
reliably. It is caused by integration errors of inertial 
signals and also the lack of visual feedback of trajectories 
to writers. Nontherless, trajectory shapes look smooth and 
natural, and directions of partial trajectories are estimated 
reliably. Also, shapes of different classes look 
distinguishable among one another. 

 
Fig. 9: Examples of trajectories estimated from raw 
sensor signals 
 
5.3 Recognition results 

The recognition performance was measured by 
dividing the data set of 15 writers into four partitions 
according to writers. First, the first three subsets were 
used for training and the other for testing. Second, the 
next three subsets were used for training and the other for 
testing. In this way, four different configurations of 
training and test sets were used for evaluating the writer-
independent recognition rate. 

Fig. 10 and 11 show recognition rates by writers and 
by classes. The average recognition rate of all the writers 
is 99.2%, and all the writers have recognition rates of 
more than 96%. However, large variations are shown 
among writers. Among gesture classes, the class 7 has the 

      0            1           2              3           4           5 

 
  6         7         8           9      cancel    delete     enter 

Fig. 7: Gesture shapes for experiments. 
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lowest recognition rate because its shape is similar to that 
of the class 1. When it is considered that half of the 
writers have no experience in writing with the proposed 
device, the high recognitionrate indicates the reliability of 
the proposed input device.  
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Fig. 10: Recognition rates by writers 
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Fig. 11. Recognition rates by classes (‘c’: ‘cancel’, ‘d’: 
‘delete’, and e: ‘enter’) 
 
6. Conclusions 

This paper introduces the gesture recognition system in 
3-D space. The employment of inertial sensors enables 
users to draw gestures in almost any place because they do 
not require any external reference devices. In order to 
reduce the variations of movement histories and postures 
of the device, the trajectory estmiation algorithm based on 
inertial navigation system theory is employed to convert 
inertial signals to trajectories. Bayesian network based 
gesture recogntion algorithm is employed to recognize the 
estimated trajctories.  

The proposed gesture recognition system showed a 
promising performance; the average recogntion rate of 
writer independent test was about 99.2% on the database 
of 15 writers and 13 classes of gestures. It is quite a 
promising result with the fact that the half of the writers 
have no experience with the device. The estimated 
trajectories look somewhat distorted from the original 
gesture shapes but shapes of different classes look 
distinguishable.  

The future work is to enhance the preprocessing step 
such as hook removal of the estimated trajectories and to 
design gesture shapes more convenient to users.  
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