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Abstract 

Classification of Time-Series data using discriminative 
models such as SVMs is very hard due to the variable length of 
this type of data. On the other hand generative models such as 
HMMs have become the standard tool for modeling 
Time-Series data due to their efficiency. This paper proposes a 
general generative/discriminative hybrid that uses HMMs to 
map the variable length Time-Series data into a fixed 
P-dimensional vector that can be easily classified using any 
discriminative model. The hybrid system was tested on the 
MNIST database for unconstrained handwritten numerals and 
has achieved an improvement of 1.23% (on the test set) over 
traditional 2D discrete HMMs. 

 
Keywords: Generative Models, Discriminative Models, 

HMMs, SVMs. 

1. Introduction 
Classification of Time-Series (TS) data occurs in many 

pattern recognition applications such as speech recognition [1] 
and handwritten word recognition [2]. In these systems, 
generative models such as hidden Markov models (HMMs) [3] 
are used to represent these variable length sequences of vectors 
(for continuous models) or symbols (for discrete models), and 
then the classification is done using Bayes decision rule. 
Although in a previous work [4] we have discussed several 
limitations of HMMs especially when they are used for 
classification problems, yet HMMs are still the best modeling 
tool for TS data. However, for classification problems, a better 
solution would be to use discriminative models such as 
Support Vector Machines (SVMs) [5] and Multi Layer 
Perceptrons (MLPs), which are known for their good 
generalization for classification problems. 

This paper targets the problem of increasing the 
performance of classifying TS data by introducing a new 
framework that combines the advantages of generative and 
discriminative models. Such a framework should have all the 
power of the two complementary approaches [6]. In a previous 
work [7], we have presented the hybrid combination and 
illustrated its validity with preliminary experiments in a 
constrained environment and the combination showed 
promising results. In this paper, the proposed approach in [7] 

is tested in a less restricted environment by incorporating it in 
a real life pattern recognition application for the recognition of 
unconstrained handwritten numerals. The main goal of this 
paper is to increase the validity of the proposed approach when 
used for real life applications. 

The framework is composed of two stages, namely, 1) the 
modeling stage, and 2) the classification stage. For a P -class 
classification problem, the modeling stage is composed of 
P generative models (HMMs) that are used to map the TS 
input pattern into a single fixed sized P -dimensional vector 
(the likelihood score), that is the input of the second stage. The 
classification stage uses a discriminative model (SVM) to 
classify the vectors representing the TS patterns. The 
remainder of the paper is organized as follows. Section (2) 
reviews related work in the literature. Section (3) discusses the 
differences between generative and discriminative models, and 
section (4) presents the proposed framework. In section (5), 
experimental results on the MNIST database of handwritten 
numerals are provided to illustrate the advantage of the 
proposed framework. Finally, conclusions are drawn in section 
(6). 
 
2.  Related work 

HMMs have become a standard method for modeling and 
classifying sequential data. Increasing the performance of 
HMM-based classifiers depends mainly on increasing the 
discrimination between the models of the classifier. In the 
literature, two approaches are followed: 1) improving learning 
algorithms, or 2) optimizing the model structure (the number 
of states and the topology). We mention in the following some 
of these algorithms. 

Improving learning algorithms resulted in many training 
algorithms such as the Maximum Mutual Information (MMI) 
[8], Maximum a Posteriori (MAP) [9], the Entropy based 
distance functions algorithm [10] and Minimum Classification 
Error (MCE) [11, 12]. Optimizing HMM structure is another 
approach and it includes algorithms such as Bayesian model 
merging [13], model merging and splitting according to an a 
priori knowledge [14], optimizing the number of states using 
the bi-simulation technique [15], sequential pruning [16] and 
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model selection based on Discriminative Information Criterion 
(DIC) [17]. 

Despite of the several algorithms mentioned above, for 
learning, the Baum-Welch [3] and the Viterbi [18] are still the 
most popular training algorithms. As for the structure, still a 
predetermined topology and number of states is the common 
method used. This is due to 1) the computational cost of the 
new methods with respect to the increase in performance they 
provide, and 2) the a priori knowledge required by some of 
these algorithms may be available for applications such as 
speech recognition but may not be available for other 
applications. 

A new approach that appeared recently in the machine 
learning community is the framework of generative and 
discriminative models. The first comparison between both 
approaches was introduced in [19] and recently addressed in 
[21] and [22]. The first formal combination appeared in [20] 
and it was later applied to speech recognition and speaker 
verification in [6] by extracting the Fisher Kernel form the 
generative models. The proposed framework in this paper is in 
general stimulated from [20] in that generative models are 
used to map the variable length sequential data into a single 
vector with a fixed size using the likelihood score instead of 
the Fisher score. Despite of the simpler combination method 
proposed, the framework improved the results of standard 2D 
discrete HMM results. 
 
3.  Generative vs. discriminative models 

Choosing between discriminative and generative models is 
problem dependent. For a density estimation problem, 
generative models would be the best choice. However, for 
classification problems, discriminative models are preferred to 
generative ones due to their low asymptotic error. 

A main reason for this choice is succinctly articulated [21] 
by Vapnik [23], “one should solve the classification problem 
directly and never solve a more general problem as an 
intermediate step such as modeling )|Pr( YX ”. Despite of the 

low error rate achieved by discriminative models in many 
classification problems, it was shown in [19] that learning 
discriminative models might not always lead to the best 
classifier. In addition, it is very difficult to classify sequential 
data using discriminative models due to their variable length. 
In the following, the advantages and disadvantages of 
generative and discriminative models are addressed from 
different perspectives [6]: 
• Target of learning and the classification rule: Generative 

models learn a model of the joint probability ),Pr( YX , 

of the input X and the labelY . Their prediction is made 
by computing the likelihood )|Pr( YX using Bayes rule 

and then picking the most likely Y . On the other hand, 
discriminative classifiers focus on modeling the decision 
boundaries between classes by modeling the posterior 
probability )|Pr( XY directly or learning the direct 

map from input X to the class labels. Therefore, the 

focus of discriminative models is on correct classification 
only while generative models focus on modeling the true 
density of the data. 

• Learning method: Generative models use reliable and 
efficient techniques for Maximum Likelihood (EM 
algorithm) [24] or Maximum A Posteriori estimation. The 
EM algorithm provably converges monotonically to a 
local maximum likelihood solution and typically 
outperforms gradient ascent methods [6] that are used for 
discriminative models. Also, during training, the EM 
algorithm needs less parameter tuning than gradient 
descent methods. 

• Modular learning: For generative models, an independent 
model is built for each class where each model is trained 
individually and considers only the data whose labels 
correspond to it. Hence, the model does not interact with 
other classes and avoids considering the whole training 
set and consequently learning is simplified and the 
algorithm proceeds faster. Moreover, addition of a new 
class or deletion of an existing one is easier. Unlike 
generative models, discriminative models build a single 
model for all classes and hence it requires simultaneous 
consideration of all other classes which makes training 
harder. Discriminative models also involve iterative 
algorithms and may not scale well [19]. 

• Missing data: Unlike discriminative models, generative 
models are capable of learning even in the presence of 
some missing values. This is due to their learning method 
which optimizes the model over the whole dimensionality 
and thus models all the relationships between the 
variables in a more equal manner. 

• Rejection of poor or corrupted data: The likelihood value 
obtained from generative models is more reliable than the 
posterior obtained from discriminative models, since 
generative models try to represent the true density of the 
data. A corrupted input or an outlier can be easily 
detected by the low likelihood and hence the design of a 
rejection rule is made easier. 

4. The Proposed Framework 

4.1 Notations 
  For complete references on HMMs and SVMs, the reader is 
required to read [3] and [5] respectively. The paper uses the 
basic compact notation of HMMs defined in [3] 
where ),,( πλ BA= , λ is the hidden Markov model, A is 

the transition probability matrix, B is the observation 
probability matrix andπ is the initial state probability. In order 
to avoid any confusion to the reader, this subsection illustrates 
the notations that are going to be used in the following 
subsections: 
• A training set of a TS data is defined 

by }1|{ NiZ i ≤≤=Ψ such 

that, }1|{ i
i
ti TtzZ ≤≤= , di

tz ℜ∈ , iT  is the length 

of the sequence and N is the size of the training set. 

• The pair },{ ii YZ represents the training example iZ with 

the label iY such that }1|{ PjCY j ≤≤=Υ∈  where 

P is the number of classes. 
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• The function PdF ℜ→ℜ: (defined later) is a nonlinear 
function that takes iZ as input and maps it to a 
point P

iX ℜ∈ . Therefore the 

set }1|{ NiX i ≤≤=Χ is the image of the 

setΨ under the function F . 
 
It is worth noting that it is not a restriction that the 
dimensionality of X should be equal to the number of classes. 
It could be that due to several variations in the patterns within 
one class, the data could be represented using more than one 
model (such as in our case). Accordingly the number of 
models is going to be larger than the number of classes 
and X will have a dimensionality equal to the number of 
models.  
 

4.2 The generative/discriminative framework 
The above-mentioned advantages and disadvantages 

(section 3) led us to propose a new framework that combines 
the advantages of both models and overcomes the 
disadvantages of each separately. The framework is stimulated 
from [20] and it consists of two stages, namely 1) the 
modeling stage, and 2) the classification stage. Figure (1) 
shows a block diagram of the proposed framework. 

The modeling stage is the first stage of the proposed 
framework and it consists of generative models. It has the 
basic role of mapping the variable length sequential 
pattern

iZ into a single fixed size vector. The basic idea for the 

modeling stage is as follows. For a P -class problem, each 
HMM is trained with a set of examples that belong to its class, 
however, when using the maximum likelihood decision rule to 

classify a new input pattern
0Z , each model HMM jλ  is given 

the input pattern
0Z to compute the forward 

probability )|(Pr 0 jj Z λ [3] and the hope is always that the 

model of the correct class will output the highest likelihood. In 
the proposed framework, the modeling stage gets more 
information from all the models of the modeling stage in 
a P -dimensional real vector X (the likelihood score). In that 
sense, the modeling stage represents each sequential input as a 
point in the new space Pℜ , or more formally, it can be 
considered as the nonlinear function F mentioned in the 
previous subsection. To elaborate, consider the experiments 
presented in this paper. The problem tackled in this paper is a 
10-class problem (handwritten digits). Each digit is modeled 
by two HMMs; a horizontal HMM that scans the digits from 
left-to-right, and a vertical HMM that scans the digit from top 
to bottom. Therefore the modeling stage consists of 20 HMMs, 
and hence the likelihood score has 20 variables ( P =20), each 
one corresponds to one HMM. 

The classification stage is the second stage of the proposed 
framework. It consists of a discriminative model that has the 
role of classifying the likelihood scores, the set Χ , 
representing the sequential patterns. The discriminative model 
could be a Multi Layer Perceptron (MLP) neural network, a 
SVM or any other discriminative model, however, we chose 
SVMs for their good generalization. In fact, the discriminative 

stage acts as an ordinary classifier and its input is the output of 
the modeling stage which acts as a feature extraction layer. 
Increasing the discrimination among generative models 
implies more discriminative feature vectors and consequently 
more accurate classification. Therefore, the modeling stage 
and the likelihood value are the key players of the framework. 
In the following, an insight of the likelihood value and the 
intuition lying behind the proposed model are elaborated in 
more details. 
 
4.3 The likelihood score 

Consider the P -class problem in hand, each class is 
represented by a single HMM, and that the data (training set 
and test set) are i.i.d drawn from the same unknown 
distribution and they exist in an Euclidean space S . The set of 
the P HMM models estimated from the training data form a 
set of local densities that allocate a certain part of the huge 
space S . Although, it is desired to have these densities far 
apart from each other in order to reduce the Bayes error, real 
life data (probably with noise and outliers) do not produce 
perfectly separated densities and ambiguities can exist easily. 
The likelihood score of the HMM measures the closeness of 
the pattern to the model itself, or how likely the model has 
generated this sequence. Consider the two 
classes jC and iC with the two 

sequences jj CZ ∈ and ii CZ ∈ . For correctly trained 

models jλ and iλ , it should be that 

)|Pr()|Pr( ijji ZZ λλ < and the same for all other sequences 

that do not belong to jC . 

 
Figure 1: A block diagram of the proposed approach 
In practice, likelihoods can be very close to each other and 

this closeness depends on the similarity between the two 
sequences. Therefore, the likelihood scores stored in X  
should have a high likelihood of the correct class and low 
likelihoods of other classes where each value represents how 
the sequence is close to its model. In case of similar patterns 
from different classes, the likelihoods will be close to each 
other which is a drawback of the proposed method. The 
proposed approach is stimulated from this observation. For an 
unknown pattern 0Z , each model votes (or scores) for this 
pattern and instead of considering the highest likelihood only 
as in traditional classification using HMMs, all the likelihoods 
are considered and taken as an input for a classifier that learns 
the voting of these models. 

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004) 
0-7695-2187-8/04 $20.00 © 2004 IEEE 



  

5. Experimental results 
  Recognition of unconstrained handwritten digits is an old 
yet a well-known problem in pattern recognition. Due to the 
extensive research done in this area, state-of-the-art techniques 
[26, 30, 31] were able to achieve very low error rates. 
However, the problem is considered as a standard for testing 
new classifiers, learning algorithms and feature sets. 
 
5.1  The data set and features extraction 
  The MNIST database [25] was used in all the experiments. 
It is a very well known database for unconstrained handwritten 
digits that has a high variability in handwriting styles. The 
dataset has a training set of 60,000 samples and a test set of 
10,000 samples from approximately 250 writers. The 
distribution of the digits form each class is almost uniform. For 
the experiments, the training set was divided to a new training 
set with 45000 samples and a validation set of 15000 samples. 
The two sets were created in a manner to keep the original 
distribution of each digit in the original training set. Before 
features extraction, all digits were cropped to be contained in 
the minimum bounding box. This is an important step in order 
to make all digits with different height and width, and hence 
the TS data extracted from each digit should have different 
observation length. The Time-Series data were extracted from 
the digits by using the features proposed in [27]. By following 
the same trend in [27], two different sets were extracted from 
the digits, the row based features and the column based 
featured. 
 
5.2  The previous work 
  Before proceeding into more details and in order to avoid 
any confusion with our previous work [7], the differences 
between the current experiments and the previous ones will be 
highlighted briefly. The modeling stage in [7] consisted of 10 
HMMs (horizontal HMMs) that scanned the digits from left to 
right only. The digits in the previous work had all the same 
height and length, and hence the TS data generated from the 
feature extraction had all the same length. Currently all the 
digits are cropped to be contained in the minimum bounding 
box. The features extracted in [7] were the row pixel values of 
the digits normalized to be from 0 to 1, and hence no complex 
features were used as in the current work. The validation set in 
[7] was taken from the test set (the first 5000 samples) of the 
MNIST database and not from the training set as in the current 
work. 
 
5.3  Hidden Markov models 
  Two Discrete HMM-based classifiers (Horizontal HMM 
and Vertical HMM) were used in the experiments, one for 
each features set (column based and row based). Each 
HMM-based classifier consisted of ten models, one for each 
digit. The number of states and the codebook size for each 
HMM-based classifier were selected experimentally according 
to the best recognition rate obtained on the validation set. The 
best number of states for the H-HMM and V-HMM was 11 
and 14 respectively, and the best codebook size for both 
HMM-based classifiers was found to be 1024. Table (1) shows 
the recognition results of the H-HMM and the V-HMM on the 
validation set and the test of the MNIST database. 
 

Table 1: Recognition results of the H-HMM and the 
V-HMM on the validation and test sets 

 H-HMM (%) V-HMM (%) 
Validation set 

 
Test set 

91.26 
 

91.17 

91.02 
 

91.44 
  
The H-HMM and the V-HMM represent the modeling stage of 
the proposed framework; therefore in order to improve the 
modeling capability of the modeling stage, both HMM-based 
classifiers were combined together (HV-HMM) by summing 
the log of the final probability obtained from the forward 
computation. First row of Table (2) shows the recognition 
results of the HV-HMM on the validation and the test set 
respectively. 
 

Table 2: Recognition result of the HV-HMM and the 
proposed model on the validation and test sets 

 Validation set 
(%) 

Test set 
(%) 

HV-HMM 
 

Proposed 

92.63 
 

93.95 

92.85 
 

94.08 
 
5.3  Support vector machines 
  The H-HMM and the V-HMM were used to model the 
training set and the validation set using the proposed method 
in Section (4). Each input pattern was passed to each 
HMM-based classifier to obtain the likelihood score from each 
model. Accordingly, each pattern was mapped to a 20- 
dimensional vector; i.e. the first 10 values are for the H-HMM, 
and second 10 values are for the V-HMM. The obtained 
vectors where then used to train the discriminative stage that is 
represented by SVM classifiers. For the experiments, we used 
the SVM Light V.5.0.[30] package. The discriminative stage 
consisted of 10 SVMs using a one-against-all strategy. The 
kernel function was selected to be the RBF kernel and the 
sigma parameter for the kernel was adjusted using the method 
proposed in [35]. The SVM training was stopped when the 
highest recognition rate was achieved on the validation set. 
The constant parameter C was set to 10 in all the experiments. 
The second row of Table (2) shows the recognition results of 
the SVM classifier on the validation set and the test set. Tables 
(3) and (4) show the confusion matrix for the HV-HMM and 
proposed framework respectively. 
 
5.4 Results’ analysis 
  It can be seen from Table (1) how the results of the 
H-HMM and the V-HMM are low in general and very close to 
each other. A direct possible reason for that is the size of the 
image. The original size of the image is 28x28 (pixels) 
including a white border (4-5 pixels) on each side and after 
cropping, it becomes less than that. The features proposed in 
[27] were tested on the NIST SD19 database where the images 
are usually bigger, hence scaling the images will probably give 
better results. Although the results of the V-HMM and the 
H-HMM are close to each other, yet the combination boosted 
the results by more than 1.3% for each classifier. This 
explicitly implies that both classifiers complement each other. 
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Table 3: Confusion matrix for the HV-HMM  
classifier (%) 

 0 1 2 3 4 5 6 7 8 9 

0 - - - 11.9 2.3 7.1 11.9 - 64.3 2.3

1 - - 25.5 - 23.2 2.3 16.2 2.3 25.5 4.6

2 4.4 1.4 - 53.7 1.4 8.9 1.4 10.4 10.4 7.4

3 2.9 - 17.3 - - 33.3 - 20.2 17.3 8.7

4 - 2.2 11.1 2.2 - 4.4 2.2 8.9 26.67 42.2

5 1.0 1.0 2.1 64.2 2.1 - 3.1 2.1 21.0 3.1

6 3.8 5.0 11.3 - 16.4 40.5 - - 22.7 - 

7 - 2.5 26.5 3.8 12.6 5.0 - - 13.9 35.4

8 13.3 - 10.4 13.3 9.5 12.3 9.5 7.6 - 23.8

9 1.1 4.4 2.2 29.6 16.4 4.4 - 13.1 28.5 - 

 
Table 4: Confusion matrix for the hybrid model (%) 

 0 1 2 3 4 5 6 7 8 9 

0 - - 2.78 16.6 2.78 8.33 19.44 - 47.2 2.78

1 - - 33.3 - 18.1 3.0 18.8 3.0 18.1 6.0

2 4.4 1.4 - 52.9 1.4 1.4 2.9 17.6 10.2 7.3

3 1.3 - 17.3 - - 38.6 - 16.0 20.0 6.6

4 - 5.5 9.2 3.7 - 1.8 5.5 9.2 12.9 51.8

5 1.1 3.5 1.1 54.1 4.7 - 3.5 3.5 24.7 3.5

6 6.9 6.9 15.5 - 17.2 27.6 - - 25.8 - 

7 - 3.9 28.9 3.9 11.8 5.2 - - 7.8 38.1

8 17.3 - 12.5 8.6 10.5 9.6 10.5 8.6 - 22.1

9 1.0 5.4 1.0 30.1 17.2 4.3 - 16.1 24.7 - 

 
Table (2) shows how the results of the proposed model 

overcome the results on the HV-HMM on the validation set 
and the test set by more than 1.2% for each set. Despite of the 
low performance of the HMMs in the modeling stage, yet the 
discriminative stage was able to enhance the overall 
classification of the system. By looking to Tables (3) and (4), 
one can see how the increase in performance, although seems 
to be promising, yet it shows interesting observation on the 
capability of the proposed model. It is expected that the error 
in all cases in Table (4) should be less that those in Table (3), 
however, this is not the case. There are cases where the error in 
Table (4) is slightly higher than or equal to that of Table (3), 
but when it comes to the increase achieved by the hybrid 
system in cases such (0,8), (1,4) and others (highlighted in 
grey), the error dramatically decreases down. Therefore the 
total of these ups and downs made the proposed model ahead. 
This in turns questions two issues; 1) how informative is the 
value of the likelihood obtained from the HMMs, and 2) how 
the hybrid will behave in case of an unbalanced training set. 

For the first issue, it is clear that the likelihood value 
(which is a sum of the probabilities of the alpha computation) 
is not so informative and more statistical information can be 

obtained from the states of the model. For the second issue, it 
is known that generative models do not exploit prior 
probabilities of each class while discriminative models do. 
Hence, this factor will affect the modeling capability of the 
modeling stage and consequently the overall hybrid. 

6. Conclusion and future work 
  This paper increases the validity of a previously proposed 
framework [7] that combines generative and discriminative 
models for the classification of variable length Time-Series 
data. The framework is composed of 1) a modeling stage that 
has the role of mapping the variable length Time-Series data in 
to a fixed size vector, and 2) a discriminative stage that has the 
role of classifying the output of the modeling stage. The 
framework was able to improve the results of a two 
dimensional discrete HMM by more than 1.2%. 
  The accuracy of the framework depends mainly on the 
modeling capability of the HMMs in the modeling stage, and 
on the type of information extracted from these models that 
represent the variable length Time-Series data. Increasing the 
discrimination between the HMMs will help the discriminative 
stage to produce better decision boundaries between classes. 
Such an improvement can be achieved by using mixtures of 
generative models, training the HMM discriminatively using 
MCE [11, 12], or training the HMMs and the SVMs 
simultaneously. As for the discriminative stage, testing other 
strategies for combining SVMs might bring better 
performance. For real life applications, neural networks can 
replace SVMs since they have a faster testing time compared 
to SVMs. The framework in general can accept many 
modifications for improvements and in this paper encourages 
for future research work in this direction. 
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