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Abstract 
 

In this paper, we describe a diagnostic tool for 
automated assessment of developmental dyspraxia 
among children using Beery’s VMI test drawings. 
Various attributes extracted from the dynamic pen 
movements are used for this assessment. The test 
environment is exactly the same as that used in 
conventional VMI tests, except that the test population is 
partitioned into several age-bands. The population 
granularity significantly improved the diagnostic 
accuracy and also revealed interesting results despite 
limited data availability. 

 
 

1. Introduction 
 

Analysis of handwriting and drawings are often used 
to reveal physio-psychological states of a person. 
Researchers have used these for the diagnosis and/or 
assessment of severity of Parkinson’s disease [1], stroke 
related problems [2], and so on. In this paper we present 
a tool for improved diagnosis of developmental 
dyspraxia in children by automated analysis of the 
copying of geometric shapes.  

Dyspraxia is a neurological disorder which is 
associated with difficulty in planning and carrying out 
complex movements. Developmental dyspraxia is 
common among children and very little is known about 
its cause. Dyspraxic children often present with a range 
of difficulties including poor academic progress, speech 
delays and impairments, right-left disorientation, as well 
as emotional and behavioural difficulties due to 
rejection, frustration and low self-esteem [3]. Many 
children fail to have their difficulties recognized, and are 
often simply categorized as ‘clumsy’ [4]. An appropriate 
means of identifying and assessing such children is 
clearly therefore very important and, if automated in its 
implementation, can provide effective and efficient 
screening on a widely available basis. 

The Visual Motor Integration (VMI) test [5] is a 

frequently used assessment procedure for dyspraxia 
among children. By judging children’s ability to copy a 
set of geometric shapes, their developmental states are 
ascertained. The conventional VMI test procedure 
mainly concentrates on the finished quality of the copied 
shapes (e.g., completeness of the drawing, relative 
positioning of shape segments, etc.). We have already 
reported that a rich set of information can be extracted 
by examining the dynamic execution pattern of the 
drawings and a combination of standard static, dynamic, 
and execution strategy features can be effectively used 
as diagnostic indicators of developmental dyspraxia 
among children [6,7]. In this paper we argue that 
variability in the test population due to demographic 
attributes such as age, gender, etc. is significant and 
incorporation of these can lead to a superior 
discrimination. Empirical results support this hypothesis 
and significantly improved performance is achieved 
when age-based granularity is incorporated.  
 
2. Developmental Dyspraxia 
 

Dyspraxia is a neurologically based disorder of the 
functions associated with the planning and execution of 
movements to achieve a given task.  It is one of the most 
common developmental disorders among children and 
may affect any or all areas of development – physical, 
intellectual, emotional, social, language, and sensory. 
Under normal circumstances, children with dyspraxia 
may appear no different from their peers. Only when 
new skills are tried or known ones taken out of context, 
do their difficulties generally become apparent. The 
World Health Organization (WHO) states that it affects 
6% of all children, while other estimates vary between 
10-20% [8].  

Despite considerable research over the years, very 
little is known of its cause. It is believed this may be 
caused by a glitch of some kind at the foetal 
developmental period or at birth that damages some 
neuron cells. Dyspraxia is not the result of poor physical 
strength, impaired primary sensation, or anything that 
would show up on normal neurological examination. 
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The diagnosis of dyspraxia often involves a general 
screening carried out by a paediatrician, community 
medical officer, or clinical psychologist. In many cases 
the symptoms are not apparent until the impaired 
systems are overtaxed or the condition has severely 
deteriorated. There is no apparent clinical cure, and the 
treatment usually involves retraining the child (by 
specialist therapists) to overcome the observed 
difficulties. 

 
 

3. The Visual-Motor Integration (VMI) Test 
 

The Visual Motor Integration test (VMI), one of the 
standard tests adopted for assessing dyspraxia, is based 
on the observation that children’s ability to copy 
geometric forms has a strong correlation with their 
academic achievements. The VMI test has had wide 
acceptability for use with children of varying 
background and cultures throughout the world. 

The VMI test requires children to copy with pencil 
and paper a sequence of geometric shapes of increasing 
complexity.  Figure 1 illustrates the 24 shapes used for 
the analysis in sequence. A smaller set is used for very 
young children. The VMI test procedure is generally not 
time-restricted, and not all children copy all the shapes. 
No feedback or encouragement is allowed except for 
some simple instructions which are essential for the 
proper conduct of the test. The test administrator 
compiles a raw-score which is then converted to other 
standardized metrics. The higher are the scores, the 
more competent the performance. The test is 
traditionally administered by an occupational therapist. 

4. Proposed Diagnostic System 
 

The proposed system for automated diagnostic/ 
screening is illustrated in Figure 2. It comprises a 
parallel combination of 24 classifiers, each committed to 
a particular VMI shape and acting independently. The 
children are categorized into a number of age groups and 
this information is passed both to the member classifiers 
and the combiner. The member classifiers, in our 
implementation, contain separate mathematical models 
for each age group. The classifier output is a hard 
decision (i.e., whether dyspraxia is or is not present) 
along with its relative confidence in that decision. These 
individual verdicts are then fed to a decision-fusion 
engine which, using standard multi-expert fusion 
protocols, reports the overall diagnosis.  

The key to the scheme under consideration here is the 
capture of the execution mechanism of the drawings. 
The interface adopted for this collection is a standard 
computer-linked graphics tablet.   The paper-based VMI 
test sheets are affixed to the tablet surface and the child 
copies the shapes directly on to paper using of a cordless 
digitizer pen. The experimental set-up is, therefore, 
made to parallel almost exactly the conditions prevailing 
when conventional manual testing is undertaken. In our 
automated testing, the pen movements and exerted pen-
pressures are recorded as a time-stamped series of 
(x,y,p) vectors. Many systems may also record and 
utilize additional information such as the angle and tilt 
of the pen etc. It has already been shown that a range of 
interesting discriminatory metrics/attributes can be 
extracted from this data [6,7], which are subsequently 
used for our analysis. 

1.Vertical 
line 

2.Horizontal 
line 

3.Circle 5. Right oblique 
line 

6.Square 7. Left 
oblique line 

8.Oblique 
Cross 

4.Cross 

9.Triangle 10. Open square & 
circle 

11. 3-line cross 12. Arrows 13. 2-D rings 14. Six 
circles 

15. Circle & tilted 
square 

16. Vertical 
damond 

17. Tilted 
triangles 

18. 8-dot 
circle 

19. Wertheimer’s 
Hexagons 

20. Horizontal 
damond 

22. Necker 
cube 

23. Tapered box 24. 3-D Star 21. 3-D rings 

Figure 1. Shapes from the visual-motor integration (VMI) test. 

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004) 
0-7695-2187-8/04 $20.00 © 2004 IEEE 



 

 

5. Experiments and Results 
 

A number of empirical investigations were conducted 
to assess the impact of granularity with respect to age 
banding on dyspraxia screening. Data for this evaluation 
trial were collected from two distinct test populations. 
The first group is from children with diagnosed 
dyspraxia and referred to a local Paediatric Assessment 
Centre. There are 75 dyspraxic children, 59 male and 16 
female. The second group comprises non-screened 
children from a local primary school with no known 
disability. This group has 72 children of whom 32 are 
male and 40 female. ‘Biological age’ of both these 
populations ranged between 5 and 12 years. All these 
children underwent conventional VMI testing while their 
dynamic pen movement details were recorded as 
described previously.  

Three types of features were extracted from the pen-
dynamics: static, dynamic and strategic. The static 
features, such as width, height, etc., are indicators of the 
quality of the finished drawing. The dynamic features 
(e.g., velocity and pressure profile, various time 
intervals, etc.) provide insight into the mechanism of the 
drawing execution. The strategic features highlight 
aspects of drawings such as stroke sequencing, start/end 
locations, etc. In total, a 21-dimensional feature vector is 
extracted from each shape drawn. All measurements are 
normalized to a [0,1] scale and all the extracted features 
are used for the analysis irrespective of the shape 
complexities. 

The first experiment focused on the ability of the 
member classifiers in identifying dyspraxia by using 
features from a single shape without incorporating any 
population granularity (i.e., all children are put into a 
single age group). Numerous classification techniques 
are available (e.g., statistical, AI, biologically-inspired 
networks etc.) [9]. We used a range of such algorithms 
and the observed error rates are presented in Table 1.  

 
Table 1. Diagnosis error rates [irrespective of age]. 

Algorithm* VMI 
Shape # UDC Parzen Tree LogLC SVM 1-NN Fisher Best 

   Before fusion: 
1 43.8 44.5 51.4 38.4 39.0 51.4 41.1 LogLC
2 43.2 44.5 50.0 44.5 42.5 45.9 45.2 SVM 
3 32.2 36.3 36.3 34.3 35.6 34.3 32.9 UDC 
4 44.3 32.2 40.3 36.2 36.9 36.2 34.2 Parzen
5 55.7 36.9 49.0 43.0 41.6 45.0 45.0 Parzen
6 45.6 45.6 49.7 45.0 44.3 40.3 47.0 1-NN 
7 47.0 45.0 53.7 42.3 42.3 50.3 42.3 LogLC
8 41.9 50.7 42.6 44.6 48.0 53.4 47.3 UDC 
9 47.3 39.2 41.9 42.6 45.3 44.6 40.5 Parzen

10 50.3 43.6 49.7 38.9 47.0 52.4 40.3 LogLC
11 46.3 45.6 49.7 38.9 49.0 52.4 39.6 LogLC
12 38.9 49.7 49.7 33.6 39.6 51.7 37.6 LogLC
13 37.6 44.7 46.8 36.9 44.0 51.8 37.6 LogLC
14 36.9 41.1 48.2 36.9 34.0 43.3 36.9 SVM 
15 42.9 37.9 48.6 39.3 44.3 44.3 39.3 Parzen
16 42.3 36.0 41.4 35.1 32.4 39.6 35.1 SVM 
17 40.5 52.3 55.9 55.0 45.1 48.7 50.5 UDC 
18 36.9 41.4 50.5 41.4 43.2 50.5 41.4 UDC 
19 35.1 36.2 42.6 31.9 37.2 35.1 33.0 LogLC
20 36.2 44.7 43.6 40.4 38.3 38.3 39.4 UDC 
21 43.0 44.1 46.2 50.5 60.2 39.8 50.5 1-NN 
22 40.6 42.0 31.9 39.1 53.6 44.9 37.7 Tree 
23 43.5 43.5 46.4 26.1 33.3 49.3 27.5 LogLC
24 59.7 41.8 53.7 50.8 44.8 40.3 52.2 1-NN 

   After fusion (by Mean rule):  
All 24 
Shapes 30.9 29.8 31.8 26.9 34.0 30.1 27.4 26.8 

Best 10 
shapes 30.1 29.4 38.4 25.3 31.4 28.8 27.0 26.4 

Best 5 
shapes 30.6 27.0 33.2 26.4 29.3 27.7 25.2 28.9 

*UDC-Uncorrelated quadratic Bayes classifier, PARZEN-Parzen 
densities based classifier, TREE-Decision tree classifier, LOGLC-
Logistic Linear Classifier, SVM-Support Vector Classifier, 1-NN-
Nearest neighbour classifier, FISHER-Fisher's Least Square Linear 
Classifier 

Classifier #1 Classifier #2 Classifier #24 

Combiner 

. . . 

. .. .. .. . .. ..  

Dyspraxic? 

. . . 

Child 

Figure 2. The proposed diagnostic system 

(Age) 
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Figure 3. Behavioural shift with age (for shape 1) 
 
 

Table 2. Diagnosis error rates for the Age Group I 
Algorithm VMI 

Shape # UDC Parzen Tree LogLC SVM 1-NN Fisher Best 

   Before fusion: 
1 25.9 25.9 22.2 40.7 27.8 46.3 35.2 Tree 
2 33.3 38.9 44.4 44.4 31.5 42.6 31.5 SVM 
3 31.5 27.8 24.1 38.9 31.5 40.7 35.2 Tree 
4 65.5 47.3 47.3 38.2 40.0 43.6 40.0 LogLC
5 41.8 50.9 49.1 52.7 32.7 50.9 47.3 SVM 
6 32.7 32.7 50.9 38.2 32.7 40.0 40.0 UDC 
7 36.4 41.8 36.4 45.5 36.4 52.7 45.5 UDC 
8 38.9 37.0 51.9 35.2 33.3 38.9 27.8 Fisher
9 46.3 31.5 44.4 46.3 35.2 42.6 40.7 Parzen

10 30.9 29.1 45.5 32.7 29.1 38.2 27.3 Fisher
11 40.0 49.1 32.7 23.6 25.5 47.3 25.5 LogLC
12 25.5 29.1 38.2 36.4 21.8 30.9 25.5 SVM 
13 29.2 43.8 41.7 45.8 27.1 41.7 35.4 SVM 
14 31.3 39.6 39.6 37.5 27.1 43.8 29.2 SVM 
15 54.2 35.4 39.6 41.7 31.3 41.7 41.7 SVM 

   After fusion (by Mean rule):  
All 15 
Shapes 31.3 26.0 29.7 29.6 31.9 29.3 20.9 26.1 

Best 10 
shapes 30.1 25.7 28.6 22.2 31.3 27.4 22.5 22.3 

Best 5 
shapes 26.7 22.3 31.8 30.1 30.3 27.5 22.2 26.3 

 
 
 
It is evident that a degree of diagnostic classification 

can be achieved from certain individual shapes, although 
in many cases, member classifiers failed to effectively 
discriminate between dyspraxic and normal children. 
Diagnostic accuracies are strongly dependent on the 
underlying classification algorithm. These relatively low 
accuracies may be attributed to the small size of the 
sample population. 

In the second stage of our proposed system, the 
individual decisions are combined employing the ‘Mean-
rule’ combination protocol [10]. In cases where a child 
did not draw some of the VMI shapes, the corresponding 
classifiers enforced decisions in favour of dyspraxia. 
The resulting global error rates are presented in the top 
row of the bottom section in Table 1. Note that identical 
classification algorithms were used for all the member 
classifiers. It is also evident that many shapes offered 
very low discriminatory information and their inclusion 
is unlikely to contribute towards an effective decision-
fusion. Therefore, we attempted fusing only the best 10 
or 5 decisions and the resulting error rates are shown in 
the bottom two rows of Table 1. We also observed that 
different member classifiers perform optimally under 
different algorithms (as indicated in the rightmost 
column of Table 1). So, we also combined member 
classifiers while using their most suited algorithm. Error 
rates thus achieved from the combination are shown in 
the rightmost column of the bottom three rows. 

A general observation from this empirical study is 
that fusion of classifiers offered a more robust decision, 
although the combined performance is sometimes poorer 
than some of the fusing members. This is due to the 
adverse effect of combination with the non-
discriminatory classifier outputs. Performance thus 
improved when only the best-N classifiers from the pool 
were combined. It is also noticeable that, for some of the 
combinations, the best-5 shapes generated less accurate 
decisions than best-10. This happened because the 
success of a combination not only lies in the individual 
superiority of the members but also depends on their 
mutual independence and diversity [11].  

Another reason for the low accuracies of the member 
classifiers may be the high variability in the copied 
drawings introduced by the very wide range of child 
ages. Since the symptoms of dyspraxia can, to an extent, 
be ameliorated with increasing age, drawings of simple 
shapes of an older dyspraxic child may appear very 
similar to that of a healthy younger child. Figure 3 
illustrates the change in behavioural trait with increasing 
age by plotting mean-velocity of all subjects tested 
across all biological age ranges with respect to their 
copying of Shape 1 (vertical line). This graph confirms 
the tendency of patients to draw faster than controls of a 
similar age, and also shows that older patients tend to 
develop a strategy of slower execution than their 
younger counterparts. This anomaly can be handled by 
categorizing children into a number of age groups so 
that children with anticipated similar ability are grouped 
together. 

With this in mind, we created three heuristic groups 
where Group I included children below 7 years of age, 
Group II those aged 7 and 8 and Group III consists of 
children older than 8 years. We tested the system 
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performance with the population from one group only 
and the resulting error rates are shown in Tables 2, 3 and 
4. In Table 2, VMI shapes only up to 15 are shown 
because very few children in this age group actually 
draw Shapes 16 or beyond. 

We can readily see that the overall accuracy after 
fusion is significantly enhanced in most cases for all age 
groups. The relatively higher error rates found in Table 
2 imply that Age Group I should be further split into 
smaller age bands. 

In line with our previous observations, it is obvious 
that selection of an appropriate subset of shapes and 
corresponding classification algorithms can lead to the 
implementation of a superior diagnostic system. The 
choice of shapes and algorithms is related to the age of 
the child under consideration and it may even be worth 
exploring the possibility of incorporating non-VMI 
shapes into this automated diagnostic tool. 

 
 
 
Table 3. Diagnosis error rates for the Age Group II. 

Algorithm VMI 
Shape # UDC Parzen Tree LogLC SVM 1-NN Fisher Best 

   Before fusion: 
1 64.7 47.1 38.2 50.0 32.4 44.1 52.9 SVM 
2 20.6 41.2 32.4 50.0 29.4 38.2 44.1 UDC 
3 29.4 32.4 26.5 35.3 38.2 29.4 38.2 Tree 
4 67.7 32.4 29.4 23.5 23.5 29.4 35.3 LogLC
5 67.7 29.4 41.2 47.1 38.2 41.2 50.0 Parzen
6 26.5 41.2 20.6 26.5 23.5 41.2 26.5 Tree 
7 67.7 47.1 55.9 50.0 32.4 41.2 50.0 SVM 
8 32.4 32.4 32.4 47.1 32.4 29.4 41.2 1-NN 
9 41.2 58.8 41.2 41.2 38.2 52.9 29.4 Fisher

10 47.1 41.2 23.5 17.7 38.2 50.0 29.4 LogLC
11 50.0 41.2 41.2 47.1 32.4 50.0 32.4 SVM 
12 44.1 58.8 50.0 44.1 32.4 64.7 50.0 SVM 
13 33.3 30.3 30.3 39.4 36.4 33.3 21.2 Fisher
14 42.4 48.5 33.3 57.6 33.3 33.3 33.3 SVM 
15 30.3 36.4 21.2 27.3 36.4 33.3 30.3 Tree 
16 40.9 31.8 54.6 54.6 36.4 31.8 45.5 Parzen
17 50.0 45.5 59.1 4.6 77.3 50.0 4.6 Fisher
18 36.4 45.5 54.6 45.5 50.0 50.0 45.5 UDC 
19 33.3 22.2 55.6 55.6 16.7 33.3 55.6 SVM 
20 33.3 33.3 61.1 22.2 27.8 38.9 27.8 LogLC
21 35.3 52.9 76.5 23.5 47.1 70.6 23.5 LogLC
22 61.5 61.5 61.5 46.2 46.2 61.5 53.9 LogLC
23 15.4 38.5 30.8 69.2 53.9 38.5 53.9 UDC 
24 7.7 38.5 30.8 69.2 61.5 30.8 76.9 UDC 

   After fusion (by Mean rule):  
All 24 
Shapes 27.3 18.4 17.1 17.8 21.4 19.0 21.3 15.1 

Best 10 
shapes 25.9 13.2 18.4 19.3 11.4 15.9 21.1 10.3 

Best 5 
shapes 33.6 10.3 19.1 24.7 12.4 13.6 18.9 15.6 

Table 4. Diagnosis error rates for the Age Group III. 
Algorithm VMI 

Shape # UDC Parzen Tree LogLC SVM 1-NN Fisher Best 
   Before fusion: 

1 37.9 50.0 29.3 34.5 43.1 43.1 41.4 |Tree 
2 37.9 46.6 53.5 44.8 43.1 34.5 44.8 1-NN 
3 34.5 41.4 22.4 37.9 39.7 37.9 36.2 Tree 
4 40.0 33.3 48.3 40.0 40.0 41.7 38.3 Parzen
5 36.7 36.7 38.3 48.3 41.7 50.0 55.0 UDC 
6 31.7 30.0 45.0 38.3 31.7 31.7 38.3 Parzen
7 45.0 46.7 35.0 36.7 48.3 55.0 40.0 Tree 
8 35.0 46.7 36.7 40.0 35.0 51.7 38.3 UDC 
9 35.0 40.0 28.3 26.7 33.3 35.0 30.0 LogLC

10 40.0 30.0 36.7 38.3 35.0 38.3 38.3 Parzen
11 50.0 46.7 41.7 41.7 45.0 46.7 30.0 Fisher
12 58.3 33.3 45.0 31.7 28.3 46.7 30.0 Fisher
13 58.3 46.7 56.7 40.0 43.3 48.3 48.3 LogLC
14 33.3 40.0 35.0 26.7 56.7 41.7 40.0 LogLC
15 35.6 30.5 33.9 32.2 28.8 33.9 30.5 SVM 
16 32.2 35.6 33.9 37.3 33.9 37.3 40.7 UDC 
17 37.3 44.1 45.8 44.1 40.7 40.7 40.7 UDC 
18 33.9 42.4 45.8 32.2 44.1 50.9 23.7 Fisher
19 39.3 58.9 46.4 39.3 48.2 33.9 46.4 1-NN 
20 33.9 25.0 44.6 32.1 35.7 30.4 33.9 Parzen
21 41.1 39.3 30.4 35.7 42.9 33.9 42.9 Tree 
22 41.7 27.1 56.3 39.6 31.3 27.1 45.8 Parzen
23 35.4 41.7 45.8 39.6 31.3 52.1 29.2 Fisher
24 55.3 40.4 36.2 48.9 46.8 40.4 38.3 Tree 

   After fusion (by Mean rule): 
All 24 
Shapes 32.2 26.6 26.8 24.2 24.9 23.6 24.7 13.4 

Best 10 
shapes 29.7 15.6 25.0 18.3 24.5 21.9 26.1 22.0 

Best 5 
shapes 30.7 20.5 24.2 21.9 21.9 19.0 24.2 20.4 

 
Table 5 shows the error rates for the whole 

population. These values can now be compared with 
those shown in the bottom 3 rows of Table 1. By 
considering all the children as belonging to one age 
group we obtained error rates around 26%. However, by 
introducing just three separate age categories, the error 
rate achieved improves to around 19%. This is indicative 
of a very fruitful avenue to explore for improved 
assessment of dyspraxia in the future. 

 
6. Conclusion 
 

This paper has outlined an approach, based on 
classifier combination techniques, to the design of an 
automated system for screening dyspraxia in children.  
The potential of the proposed system has been discussed 
in the context of the established VMI test. Population 
granularity was introduced by categorizing children into 
several age groups which subsequently lead to a 26% 
improvement in its diagnostic ability. 
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Table 5. Overall diagnosis error rates of the population 
(Age Groups I, II and III). 

Algorithm VMI 
Shape # UDC Parzen TREE LogLC SVM 1-NN Fisher Best 
   After fusion (by Mean rule):  

All  
Shapes 30.6 24.3 25.4 24.6 26.7 24.6 22.4 18.7 

Best 10 
shapes 28.9 18.8 24.7 20.1 23.8 22.5 23.5 21.9 

Best 5 
shapes 29.9 18.6 25.8 25.8 22.7 20.9 23.1 20.1 

 
 
It is apparent that error rates reported here can 

nevertheless be considered rather high. However, such 
figures are not uncommon when dealing with a small 
population with very high variability.  

Dyspraxia is a general categorization of a range of 
diverse symptoms and phenomena, and dyspraxic 
children often also suffer from other neuro-
psychological abnormalities such as dyslexia, attention 
deficit hyperactivity disorder (ADHD), etc. [12]. These 
complex mixtures of variables make it nearly impossible 
to introduce a common-platform solution and point 
towards the need for a greater degree of granularity in 
population specification. The initial results of this study 
strongly support this notion. 

Granularity may be introduced in many forms. We 
investigated the impact of population granularity on our 
system performance. Despite heuristic age-based 
partitioning, the improvements are noticeable and point 
towards the necessity of more sophisticated clustering of 
the subjects. Similar granularities may be introduced 
based on gender, handedness, and so on. 

Despite the embryonic stage of the investigation 
reported here, it is apparent that an automated system for 
dyspraxia screening may be developed based on the 
pattern analysis paradigm. Furthermore, a subset of the 
VMI shapes is capable of producing superior diagnostic 
decision.  
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