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Abstract

Recognition of hand-drawn shapes is an important and
widely studied problem. By adopting a generative proba-
bilistic framework we are able to formulate a robust and
flexible approach to shape recognition which allows for a
wide range of shapes and which can recognize new shapes
from a single exemplar. It also provides meaningful proba-
bilistic measures of model score which can be used as part
of a larger probabilistic framework for interpreting a page
of ink. We also show how Bayesian model comparison al-
lows the trade-off between data fit and model complexity to
be optimized automatically.

1. Introduction

In this paper we study the problem of recognizing hand-
drawn sketches captured using an online digitizer, such as
a Tablet PC computer, which records temporal information.
The problem comprises three related tasks: robust fitting of
shapes to ink samples, recognition of a given piece of ink
as a template (e.g. a square), and segmentation of a whole
page of ink into disjoint subsets each of which is recognized
as a template. These tasks are illustrated in Figure 1.

While robust fitting of ink samples with elementary
shapes such as ellipses and lines has been studied widely in
the past, the algorithms described here are capable of exten-
sion to templates of essentially arbitrary shape. Further, the
proposed methods can also handle dashed lines or repeated
inking of strokes. Finally, our probabilistic framework pro-
vides principled methods for comparing multiple shape hy-
potheses, accept/reject decisions, and classifier combina-
tion. We also outline how segmentation can be considered
as an extension to the basic fitting and recognition algo-
rithms that form the main focus of this paper.

Temporal information can be helpful in interpreting on-
line drawings. However, we also wish to be invariant to
some aspects of the temporal information. For instance, the
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(a) Fitting

(b) Recognition

(c) Segmentation

Figure 1. Fig. (a) shows the ink, resampled uni-
formly along arc length, and the result of fitting the
parallelogram model using EM. Fig. (b) compares
the result of fitting three different shape models to
the same ink. The three fitting scores can be used
to determine the identity of shape. Fig. (c) shows a
diagram consisting of multiple strokes after com-
bined segmentation and recognition is performed.

identity and parameters of a triangle are independent of the
number of strokes used to create it or their order or direc-
tion. The algorithms presented here use temporal informa-
tion only for segmentation, but not for fitting or recognition.

In our applications (unlike signature verification for in-
stance) we also want the recognizer to be independent of
the pen velocity. As the first step we therefore resample the
ink to give pen tip locations distributed uniformly along the
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strokes, with fixed arc length spacing.
We shall denote the resulting samples of user drawn

ink by xn wherex represents a Cartesian location in the
two-dimensional ‘screen space’, andn = 1, . . . , N in-
dexes the individual sample points. The whole user fig-
ure of N points is denotedX ≡ [xn]. Similarly, we de-
note the uniformly sampled points from each template by
Yf = [yf

m]Mm=1 wherey represents a Cartesian location in
the two-dimensional ‘template space’,m = 1, . . . ,M in-
dexes the individual template samples, andf = 1, . . . , F
indexes the figure templates. For simplicity, we have as-
sumed that each figure template is represented by the same
number of samplesM .

In the illustrations and benchmarks presented here we
have used the square, circle, unit line segment, and equilat-
eral triangle as canonical templates (i.e.F = 4). However
our algorithms allow the use of any other set of shapes. For
both fitting and recognizing the templates we restrict our
attention to affine transformations from the canonical ‘fig-
ure space’ to ‘screen space’. This is a mildly restrictive as-
sumption since certain figures such as arrows cannot be di-
rectly fit or recognized by means of only affine transforma-
tions. With these kinds of figures, we shall need to take re-
course to a higher level inference procedure. For instance
such a procedure would recognize arrows from combina-
tions of line segments.

2. Affine Transformations

Consider a general linear mapping corresponding to an
affinetransformation of the form

µ = Cy + b, (1)

whereC is a2× 2 matrix,b is a two-element vector,y is a
point in ‘canonical figure space’, andµ is a point in screen
space. We can conveniently combineC andb into a single
2×3 matrixA = [C b]. This six degree of freedom transfor-
mation incorporates translations, rotations, shear and scal-
ing. We augment the coordinatesy by appending a constant
one to form a vector[y 1] of dimension1×3. In the remain-
der of the paper we refer to the augmented vector simply as
y, so thatµi = Ayi.

Note that this parameterization may sometimes involve
redundant degrees of freedom (for instance a straight line
is governed by just four parameters corresponding to the
Cartesian coordinates of its end points) so either care must
be taken while fitting and recognizing such figures, or alter-
natively transformations involving fewer parameters have to
be employed. In order to robustly fit and recognize ink, we
next describe probabilistic models that measure the likeli-
hood that a sample of ink was generated from a template
under a specific affine transformation.

3. Generative Probabilistic Models

Given the electronic ink corresponding to a set of cap-
tured strokes, there are many methods available for decid-
ing which of a set of figures they represent (i.e. recogni-
tion), and for estimating the corresponding parameters (i.e.
fitting). These may be based on template matching, Hough
transforms, geometrical heuristics and so on. In this sec-
tion we focus on probabilistic models which represent a
generative process for ink formation. These define a model
p
(
x|A,Yf

)
for the probability density of ink at any screen

pointx given the figure templateYf and its affine parame-
tersA. Generative probabilistic models offer important ad-
vantages in sketch understanding, as discussed in Section 6.

Our generative model produces sample ink as follows:

1. Choose a figure templatef from a predefined set of
such figuresF = {1, . . . , F} according to some prior
distributionp(f). Here we assume that all such figures
(square, circle etc.) are equally probable.

2. Choose a value for the affine parametersA from a prior
probability distributionp (A|f) for the chosen figure,
and use these parameters to map a canonical version of
the figure into the screen space.

3. Decide whether a sample is generated from the figure
(ρn = 1) or not (ρn = 0). This decision can be based
on a prior probability ofδ for generating stray ink and
(1− δ) for generating ink from the figure.

4. If the sample is not from the figure then choose it ac-
cording to a uniform distribution over the screen space.
In other wordsp(xn|ρn = 0) = 1/S, whereS repre-
sents the area of the screen space.

5. If the sample is from the figure:

(a) Select a pointµn in screen space lying on the fig-
ure. This is chosen from a uniform distribution
p(µ) along the arc length of the stroke.

(b) Generate a sample ink pointxn from a Gaussian
distribution centered onµn having diagonal co-
variance with precision (inverse covariance) ma-
trix τI whereI is the unit2 × 2 matrix. Hence,
p(xn|µn, ρn = 1) = N (xn|µn, τI).

6. Repeat steps 3 to 5b a total ofN times to generate the
data setX = [xn].

The introduction of the background probability of gener-
ating arbitrary ink (via the binary latent variableρn) pro-
vides robustness to small levels of stray ink. The mixing
proportion between the figure and the background,δ, can
be estimated in the fitting algorithm by maximizing like-
lihood. Similarly, for the fitting and recognition stages we
shall omit the priors onF andp(A|f) and simply treat the
figure identity and its affine parameters as unknown.
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The probabilistic model contains another latent variable
µn for each observed ink samplexn, corresponding to the
position along the figure arc responsible for generating that
sample. The overall density model forp(xn|A, f, τ, ρn =
1) requires an integration overµ:

p(xn|A, f, τ, ρn = 1) =
∫
N (xn|µ, τ)p(µ) dµ. (2)

Since this integration will in general be intractable (see Sec-
tion 6 for some tractable special cases) we borrow a tech-
nique developed originally by [5] for digit recognition, and
used as the basis of theGenerative Topographic Mapping
(GTM) [1], in which we replace the integral along arc length
by a summation over a discrete uniform array of points.
Thus our model becomes

p(xn|A, f, τ, ρn = 1) =
1
M

M∑
i=1

N (xn|µi(A, f), τ) (3)

which corresponds to a constrained Gaussian mixture
model, with equal mixing coefficients1/M . The compo-
nent centersµi are related through a common set of affine
parametersA. In practice, we obtainµi(A, f) by a uni-
form arc length resampling ofAYf .

The generative model including the background ink
probability thus becomesp(xn|A, f, τ, δ) =

δ

(
1
S

)
+ (1− δ)

1
M

M∑
i=1

N (xn|µi(A, f), τ) . (4)

In the next section we discuss how to efficiently use this
model for robust fitting and recognition of a single figure.

4. Fitting and Recognition

The likelihood function is the probability of the observed
data set given the parameters, viewed as a function of the
parameters. Since the data samples are assumed to be in-
dependent and identically distributed, given the parameters
and the noise precision, the log likelihood function is given
by ln p(X|A, f, τ, δ) =

N∑
n=1

ln

{
δ

S
+

(1− δ)
M

M∑
i=1

N (xn|µi(A, f), τ)

}
. (5)

We fit a figuref to user ink by finding the affine parameters
that maximize the likelihood function:

A∗
f , δ∗f = argmax

A,δ
ln p(X|A, f, τ, δ). (6)

As a byproduct of the same optimization, the maximum
likelihood values for each figuref ∈ {1, . . . , F} can be
compared to recognize the most likely figure. Further, the

posterior probability distribution over the figures can also
be obtained via Bayes theorem and any uncertainty can be
propagated to subsequent layers of higher level inference.

Note that the summations inside the logarithm prevent
further simplification. We could use nonlinear optimization
strategies, such as conjugate gradients, to maximize this
likelihood function, which would require analytical evalu-
ation of the derivatives of the log likelihood. A more ele-
gant approach, however, is to use the EM algorithm [4] to
fit the parameters of each figure.

4.1. EM Optimization

The EM algorithm optimizes the likelihood function by
alternating between E- and M-steps. In the E-step we use the
current settings for the parametersA to evaluate the poste-
rior probability of correspondence betweenxn and each la-
tent pointµi, given by

ξni ≡ p(i, ρn = 1|xn) =
1
Z

(1− δ) 1
MN (xn|µi, τ) (7)

ξn(M+1) ≡ p(ρn = 0|xn) =
1
Z

δ/S (8)

whereZ = δ/S + (1− δ)
1
M

M∑
j=1

N (xn|µj , τ). (9)

In our implementation, we have assumedµi = Ayi. We
can view ξni as theresponsibilitywhich latent pointµi

takes for explaining data samplexn. Additionally,ξn(M+1)

denotes the responsibility of the uniform background prob-
ability for explaining stray ink so that

∑
i ξni = 1 for every

n. From this,δ may also be re-estimated:

δ =
∑N

n=1 ξn(M+1)∑N
n=1

∑M+1
m=1 ξnm

=
∑N

n=1 ξn(M+1)

N
. (10)

In the M-step the responsibilities{ξni} are held fixed, and
the parametersA are optimized by maximizing the ex-
pected complete-data log likelihood given byF (A, τ) =

N∑
n=1

[
M∑
i=1

ξni lnN (xn|µi = Ayi, τ) + ξn(M+1) ln 1
S

]
.

(11)
Note that the logarithm and the summation have been in-
terchanged compared with (5). By substituting the standard
expression for the Gaussian and removing additive and mul-
tiplicative constants, we see that maximization ofF with re-
spect toA is equivalent to maximizing

F̃ (A, τ) = −τ

2

N∑
n=1

M∑
i=1

ξni‖xn−Ayi‖2+ln τ
N∑

n=1

M∑
i=1

ξni.

(12)
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Maximizing with respect toA we obtain the equation

A

(
M∑
i=1

yiyi
T

[
N∑

n=1

ξni

])
=

N∑
n=1

M∑
i=1

ξnixnyi, (13)

which is easily solved to determineA. Similarly, maximiz-
ing (12) w.r.t.τ , we obtain:

τ? =

(∑N
n=1

∑M
i=1 ξni‖xn −Ayi‖2

2
∑N

n=1

∑M
i=1 ξni

)−1

. (14)

4.2. Symmetric Explanation of Model and Ink

The fitting objective of (6) has a smaller penalty for ex-
plaining user drawn ink with wasted model ink as compared
to the penalty for not explaining some section of the user
ink [3]. To further improve accuracy, we investigated an al-
ternative method for fitting and recognizing figures that ex-
plicitly enforces symmetry in the explanations. This proce-
dure measures how accurately the model explains user ink,
and conversely, also how accurately the user ink explains
the model. This may be summarized asA∗

f , δ∗f =

argmax
A,δ

[
ln p(X|AYf , τ, δ) + ln p(AYf |X, τ, δ)

]
,

(15)
where we assume the same form of generative probabilis-
tic model as above for both of the probability distributions,
sharing the sameτ and δ parameters. The EM algorithm
for the above maximization needs two sets of binary indi-
cator variables,ρ(1)

n andρ
(2)
n , as well as two sets of respon-

sibilities. The first set ofξ(1)
ni measures the responsibility

which each model sample takes for explaining a given user
ink sample, calculated as in eqs. (7, 8) substitutingξni and
ρn by ξ

(1)
ni andρ

(1)
n respectively. The second setξ

(2)
ni mea-

sures the responsibilities which each given user ink sample
assumes in explaining a model sample:

ξ
(2)
im ≡ p(i, ρ(2)

m = 1|Aym) =
1
Z

(1− δ) 1
NN (Aym|xi, τ)

(16)

ξ
(2)
(N+1)m ≡ p(ρ(2)

m = 0|Aym) =
1
Z

δ/S (17)

whereZ = δ/S + (1− δ)
1
N

N∑
j=1

N (Aym|xj , τ). (18)

Hence,δ is easily re-estimated by maximum likelihood,

δ =
∑N

n=1 ξn(M+1) +
∑M

m=1 ξ(N+1)m

N + M
. (19)

Denoting the mutual responsibility asξij = ξ
(1)
ij + ξ

(2)
ij , it

turns out that the M-step update forA andτ remain identi-
cal to (13) and (14) respectively.

P-gram Ellipse Triangle Line
P-gram 126, 125 2, 2 1, 2 1, 0
Ellipse 0, 5 121, 124 0, 2 0, 0
Triangle 2, 0 2, 6 126, 121 4, 0
Line 3, 1 10, 3 1, 3 125, 130
# Figures 131 135 128 130

Table 1. Confusion matrix for recognizing tem-
plates. Rows indicate the recognized figure while
columns indicate the true figure. In each col-
umn the accuracy of the generative model based
method is indicated on the left and symmetric
scoring scheme is indicated on the right. Correctly
recognized figures appear on the diagonal.

4.3. Initialization

In our implementations we have found it useful to start
the algorithms with a smallτ andδ and to re-estimate them
as part of the EM algorithm for fitting figure templates.
However, care must be taken in the recognition stage while
comparing the posterior probabilities to utilize the sameτ
for all the figures. This is necessary to avoid problems due
to different noise scales for different models.

Note thatAYf may not be uniformly sampled along the
arc, even thoughYf was. Thus we may wish to resample it
in every step of the algorithm. However, in practice we have
found this unnecessary when using a reasonable initializa-
tion procedure.

We use the mean of the ink samples to initialize the trans-
lation parameters inA. We initialize scale and rotation us-
ing a simple eigenvector decomposition of the covariance
matrix (this is equivalent to linear principal components
analysis). For the purposes of initialization we ignore the
contribution from shear.

4.4. Assessment of Recognition Accuracy

In order to assess the performance of these fitting and
recognition methods we asked a set of thirteen subjects to
draw parallelograms, ellipses, line segments and triangles
using a Tablet PC pen computer. A total of 524 figures
were collected. The confusion matrix for both methods de-
scribed above are provided in Table 1. The recognition ac-
curacy of both methods is equally good, and the difference
between their performances is not statistically significant.
Further evaluation with a larger database of user drawn fig-
ures would probably be useful in future.

The recognition accuracy is affected to an extent by the
sampling rate of both the figure and the user ink. In partic-
ular, finer sampling proves advantageous in disambiguating

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004) 
0-7695-2187-8/04 $20.00 © 2004 IEEE 



(a) Fitting four lines (b) Fitting a parallelogram

(c) Data better explained with four lines

Figure 2. Example of Bayesian model selection.
The same ink is explained in Fig. (a) using four
straight lines whereas in Fig. (b) it is explained us-
ing a single parallelogram. The straight lines are
less constrained and so will always give a bet-
ter fit to the data, whereas Bayesian model selec-
tion correctly prefers the parallelogram. In the Fig.
(c) the more probable explanation is given by the
model consisting of four line segments since this
gives a much better data fit.

very small figures. We assessed the failure modes of these
algorithms by visually inspecting the misclassified figures.
Most of these figures were very small and from the sampled
versions we found it difficult to accurately identify the fig-
ure even by eye. This leads us to believe that further gains
in performance are not immediately achievable, at least not
until we move to a continuous contour representation in-
stead of a sampled point based representation. It remains to
be seen if a continuous representation improves the qual-
ity of these methods.

Recognition of the entire set of 523 figures took 924.8 s
for the generative model based method, and 863 s for the
symmetric scheme, using a Matlab implementation.

5. Segmentation and Bayesian Model Selec-
tion

A practical shape recognition system must deal not just
with isolated shapes but with whole pages of ink. This can
lead to multiple alternative explanations of the same ink,
and it is important to have a principled framework for se-
lecting the best interpretation. Consider the example shown
in Figure 2. The model comprising a probabilistic mixture
of four straight lines will always give a better fit to the data

than the single parallelogram it has fewer constraints (the
lines do not have to be perpendicular to each other, nor do
their ends have to touch). Thus maximum likelihood will al-
ways prefer the more complex model.

From a Bayesian perspective, given alternative figure ex-
planationsHk, wherek = 1, . . . ,K for the observed data
D, the posterior probabilities are given by

p(Hk|D) ∝ p(D|Hk)p(Hk). (20)

If we assume that the explanations have equal prior prob-
ability (we can trivially use unequal priors if we wish)
then the posterior probabilities are determined by theevi-
dencep(D|Hk) of each explanation, which itself is found
by marginalizing over the model parametersθk:

p(D|Hk) =
∫

p(D|θk,Hk)p(θk|Hk) dθk. (21)

We can obtain a rough approximation to this integral if we
assume that each parameter has a prior which is uniform
over some region of width∆0 and that the corresponding
posterior is sharply peaked around the modelθ∗k and has
width ∆, so that

p(D|Hk) ' p(D|θ∗k)(∆/∆0)Mk , (22)

whereMk is the number of parameters inθk. We can refine
this estimate somewhat by noting that in practice the pos-
terior distribution will be multi-modal due to the presence
of multiple equivalent parameter values. For example, if the
hypothesis comprisesL line segments there will beL! per-
mutations of the parameter values all of which lead to the
same probability density over the ink. Similarly, in the case
of a square, for each parameter value there are three other
different values which give rise to the same density, corre-
sponding to rotational symmetry. If we denote the overall
redundancy factor for a given shape hypothesis byFk then
the log evidence is given by

ln p(D|Hk) ' ln p(D|θ∗k) + Mk lnC + lnFk, (23)

whereln p(D|θ∗k) is the log likelihood for the fitted model,
as calculated previously, andC = ∆/∆0 denotes the pos-
terior to prior width ratio (whereC � 1). The redundancy
factorFk is easily calculated for any given model, and we
choose a small value forC which can be tuned by cross-
validation if desired.

In order to parse an entire sketch containing multiple
templates, we first group the ink sample points into larger
units. In particular, we apply an efficient divide and conquer
algorithm to divide a stroke into roughly straight line frag-
ments. This method is quite robust, and box-shaped strokes
typically split into just a few fragments.

Next, we employ a ‘wrapper’ approach around the pre-
vious algorithms. We consider partitions of the set of all
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ink fragments and use the previous fitting and recognition
algorithms on each subset. The search space over all parti-
tions is too large, so for efficiency we consider only individ-
ual subsets of at most 7 fragments. We consider only sub-
sets of temporally consecutive fragments so that we can ap-
ply a dynamic programming algorithm to score the whole
sketch. The similarity between the user drawn ink and the
postulated explanation is scored using either the generative
or symmetric models.

6. Discussion

In this paper we have proposed a probabilistic approach
to shape modelling based on generative models and EM to
find maximum likelihood solutions. We have also shown
that Bayesian model selection techniques can be used to find
the most probable explanation for a set of strokes amongst
competing hypotheses.

We could also apply the EM algorithm to jointly fit mul-
tiple figures. We would modify the E-step trivially to as-
sign responsibilities for each ink sample to multiple figures.
The M-step can be performed independently for each fig-
ure as earlier, and the computational cost of this joint opti-
mization is the same as fitting the figures separately. For ef-
ficiency, the line fragments produced by preprocessing can
reasonably be assumed to belong to a single figure.

In building a generative model of ink based on a local
Gaussian noise model we have to find a tractable approach
to the arc length marginalization. Here we have proposed
the use of a fixed uniform discrete sampling, eq. (3), follow-
ing the framework of GTM. This allows very general tem-
plates to be considered. More flexible models based on op-
timizing the control points in a spline representation, have
been used by [5] for modelling handwritten digits. These al-
low non-affine deformations of the template, at the expense
of a more complex fitting procedure in the M-step.

For the specific case of a straight line segment the
marginalization with respect to a uniform distribu-
tion of ink can be expressed in closed form as the product
of a Gaussian with the difference of two ‘erf’ func-
tions. Figures composed of straight lines can be expressed
as constrained mixtures of these. If the same analysis is ap-
plied to a circle it again leads to a closed form solution in
terms of Bessel functions. However, the M-step will now re-
quire nonlinear optimization, offsetting some of the gain in
avoiding the GTM discretization.

An alternative framework, also limited to figures com-
posed of straight line segments, was discussed by [7]. The
center location, orientation and length of each line seg-
ment are given Gaussian distributions, the parameters of
which define the structure of the figure. Each line segment
then defines a pseudo-Gaussian distribution of ink given by
exp(−d2) whered is the distance from a point to the line,

defined to be the perpendicular distance if the orthogonal
projection exists and the distance to the nearest endpoint
otherwise. Note that in this model there are no constraints
such that, for instance, the three edges of a triangle should
coincide at their end points.

Our proposed model uses independent Gaussian noise
on each of the samples to represent the discrepancy be-
tween the captured ink and the canonical stroke. This treats
the ink samples as independent and identically distributed,
given the model parameters, and ignores the strong sequen-
tial correlations between successive samples. It is not clear
how much practical advantage could be gained by mod-
elling these correlations. However, there exist techniques
which could be employed such as hidden Markov models
and Kalman filters. Another possible framework is that of
Gaussian processes, which has already been used to pro-
vide an alternative formulation of the GTM [2]. Such ap-
proaches, however, will be complicated by the need to con-
sider the temporal ordering of strokes and of pen direction
within a stroke.
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